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Burke Marketing Services, Inc., is one of the most expe-

rienced market research firms in the industry. Burke

writes more proposals, on more projects, every day than

any other market research company in the world. Sup-

ported by state-of-the-art technology, Burke offers a

wide variety of research capabilities, providing answers

to nearly any marketing question.

In one study, a firm retained Burke to evaluate po-

tential new versions of a children’s dry cereal. To main-

tain confidentiality, we refer to the cereal manufacturer

as the Anon Company. The four key factors that Anon’s

product developers thought would enhance the taste of

the cereal were the following:

1. Ratio of wheat to corn in the cereal flake

2. Type of sweetener: sugar, honey, or artificial

3. Presence or absence of flavor bits with a fruit taste

4. Short or long cooking time

Burke designed an experiment to determine what effects

these four factors had on cereal taste. For example, one

test cereal was made with a specified ratio of wheat to

corn, sugar as the sweetener, flavor bits, and a short

cooking time; another test cereal was made with a dif-

ferent ratio of wheat to corn and the other three factors

the same, and so on. Groups of children then taste-tested

the cereals and stated what they thought about the taste

of each.

Analysis of variance was the statistical method used

to study the data obtained from the taste tests. The results

of the analysis showed the following:

• The flake composition and sweetener type were

highly influential in taste evaluation.

• The flavor bits actually detracted from the taste

of the cereal.

• The cooking time had no effect on the taste.

This information helped Anon identify the factors that

would lead to the best-tasting cereal.

The experimental design employed by Burke and the

subsequent analysis of variance were helpful in making 

a product design recommendation. In this chapter, we

will see how such procedures are carried out.

Burke uses taste tests to provide valuable statistical

information on what customers want from a product.

© JLP/Sylvia Torres/CORBIS.

BURKE MARKETING SERVICES, INC.*
CINCINNATI, OHIO

STATISTICS in PRACTICE

*The authors are indebted to Dr. Ronald Tatham of Burke Marketing
Services for providing this Statistics in Practice.

In Chapter 1 we stated that statistical studies can be classified as either experimental or

observational. In an experimental statistical study, an experiment is conducted to generate

the data. An experiment begins with identifying a variable of interest. Then one or more

other variables, thought to be related, are identified and controlled, and data are collected

about how those variables influence the variable of interest. 

In an observational study, data are usually obtained through sample surveys and not a

controlled experiment. Good design principles are still employed, but the rigorous controls

associated with an experimental statistical study are often not possible. For instance, in a

study of the relationship between smoking and lung cancer the researcher cannot assign a

smoking habit to subjects. The researcher is restricted to simply observing the effects of

smoking on people who already smoke and the effects of not smoking on people who do

not already smoke.
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In this chapter we introduce three types of experimental designs: a completely ran-

domized design, a randomized block design, and a factorial experiment. For each design we

show how a statistical procedure called analysis of variance (ANOVA) can be used to ana-

lyze the data available. ANOVA can also be used to analyze the data obtained through an 

observation a study. For instance, we will see that the ANOVA procedure used for a com-

pletely randomized experimental design also works for testing the equality of three or more

population means when data are obtained through an observational study. In the following

chapters we will see that ANOVA plays a key role in analyzing the results of regression stud-

ies involving both experimental and observational data.

In the first section, we introduce the basic principles of an experimental study and

show how they are employed in a completely randomized design. In the second section,

we then show how ANOVA can be used to analyze the data from a completely randomized

experimental design. In later sections we discuss multiple comparison procedures and two

other widely used experimental designs, the randomized block design and the factorial ex-

periment.

13.1 An Introduction to Experimental Design 
and Analysis of Variance

As an example of an experimental statistical study, let us consider the problem facing

Chemitech, Inc. Chemitech developed a new filtration system for municipal water supplies.

The components for the new filtration system will be purchased from several suppliers, and

Chemitech will assemble the components at its plant in Columbia, South Carolina. The in-

dustrial engineering group is responsible for determining the best assembly method for the

new filtration system. After considering a variety of possible approaches, the group narrows

the alternatives to three: method A, method B, and method C. These methods differ in the

sequence of steps used to assemble the system. Managers at Chemitech want to determine

which assembly method can produce the greatest number of filtration systems per week.

In the Chemitech experiment, assembly method is the independent variable or factor.

Because three assembly methods correspond to this factor, we say that three treatments are

associated with this experiment; each treatment corresponds to one of the three assembly

methods. The Chemitech problem is an example of a single-factor experiment; it involves

one qualitative factor (method of assembly). More complex experiments may consist of

multiple factors; some factors may be qualitative and others may be quantitative.

The three assembly methods or treatments define the three populations of interest for

the Chemitech experiment. One population is all Chemitech employees who use assembly

methodA, another is those who use method B, and the third is those who use method C. Note

that for each population the dependent or response variable is the number of filtration sys-

tems assembled per week, and the primary statistical objective of the experiment is to

determine whether the mean number of units produced per week is the same for all three

populations (methods).

Suppose a random sample of three employees is selected from all assembly workers at

the Chemitech production facility. In experimental design terminology, the three randomly

selected workers are the experimental units. The experimental design that we will use for

the Chemitech problem is called a completely randomized design. This type of design

requires that each of the three assembly methods or treatments be assigned randomly to one

of the experimental units or workers. For example, method A might be randomly assigned

to the second worker, method B to the first worker, and method C to the third worker. The

concept of randomization, as illustrated in this example, is an important principle of all

experimental designs.

Cause-and-effect

relationships can be

difficult to establish in

observational studies; such

relationships are easier to

establish in experimental

studies.

Randomization is the

process of assigning the

treatments to the

experimental units at

random. Prior to the work

of Sir R. A. Fisher,

treatments were assigned

on a systematic or

subjective basis.

Sir Ronald Alymer Fisher

(1890–1962) invented the

branch of statistics known

as experimental design. 

In addition to being

accomplished in statistics,

he was a noted scientist in

the field of genetics.
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Note that this experiment would result in only one measurement or number of units

assembled for each treatment. To obtain additional data for each assembly method, we 

must repeat or replicate the basic experimental process. Suppose, for example, that instead

of selecting just three workers at random we selected 15 workers and then randomly assigned

each of the three treatments to 5 of the workers. Because each method of assembly is

assigned to 5 workers, we say that five replicates have been obtained. The process of repli-

cation is another important principle of experimental design. Figure 13.1 shows the com-

pletely randomized design for the Chemitech experiment.

Data Collection

Once we are satisfied with the experimental design, we proceed by collecting and analyzing

the data. In the Chemitech case, the employees would be instructed in how to per-

form the assembly method assigned to them and then would begin assembling the new

filtration systems using that method. After this assignment and training, the number of units

assembled by each employee during one week is as shown in Table 13.1. The sample means,

sample variances, and sample standard deviations for each assembly method are also pro-

vided. Thus, the sample mean number of units produced using method A is 62; the sample

mean using method B is 66; and the sample mean using method C is 52. From these data,

method B appears to result in higher production rates than either of the other methods.

The real issue is whether the three sample means observed are different enough for us

to conclude that the means of the populations corresponding to the three methods of as-

sembly are different. To write this question in statistical terms, we introduce the following

notation.

µ1 � mean number of units produced per week using method A

µ2 � mean number of units produced per week using method B

µ3 � mean number of units produced per week using method C

Employees at the plant in

Columbia, South Carolina

Random sample of 15 employees

is selected for the experiment

Method B

n2 = 5

Method A

n1 = 5

Method C

n3 = 5

Each of the three assembly methods

is randomly assigned to 5 employees

FIGURE 13.1 COMPLETELY RANDOMIZED DESIGN FOR EVALUATING 

THE CHEMITECH ASSEMBLY METHOD EXPERIMENT
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Although we will never know the actual values of µ1, µ2, and µ3, we want to use the sample

means to test the following hypotheses.

As we will demonstrate shortly, analysis of variance (ANOVA) is the statistical procedure

used to determine whether the observed differences in the three sample means are large

enough to reject H0.

Assumptions for Analysis of Variance

Three assumptions are required to use analysis of variance.

1. For each population, the response variable is normally distributed. Implication:

In the Chemitech experiment the number of units produced per week (response variable)

must be normally distributed for each assembly method.

2. The variance of the response variable, denoted σ 2, is the same for all of the pop-

ulations. Implication: In the Chemitech experiment, the variance of the number of

units produced per week must be the same for each assembly method.

3. The observations must be independent. Implication: In the Chemitech experiment,

the number of units produced per week for each employee must be independent of

the number of units produced per week for any other employee.

Analysis of Variance: A Conceptual Overview

If the means for the three populations are equal, we would expect the three sample means

to be close together. In fact, the closer the three sample means are to one another, the

more evidence we have for the conclusion that the population means are equal. Alterna-

tively, the more the sample means differ, the more evidence we have for the conclusion

that the population means are not equal. In other words, if the variability among the sam-

ple means is “small,” it supports H0; if the variability among the sample means is “large,”

it supports Ha.

If the null hypothesis, H0: µ1 � µ2 � µ3, is true, we can use the variability among the

sample means to develop an estimate of σ 2. First, note that if the assumptions for analysis

H0:

Ha:
 
µ1 � µ2 � µ3

Not all population means are equal

If H0 is rejected, we cannot

conclude that all

population means are

different. Rejecting H0

means that at least two

population means have

different values.

If the sample sizes are

equal, analysis of variance

is not sensitive to

departures from the

assumption of normally

distributed populations.

Method

A B C

58 58 48

64 69 57

55 71 59

66 64 47

67 68 49

Sample mean 62 66 52

Sample variance 27.5 26.5 31.0

Sample standard deviation 5.244 5.148 5.568

TABLE 13.1 NUMBER OF UNITS PRODUCED BY 15 WORKERS

fileWEB

Chemitech
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of variance are satisfied, each sample will have come from the same normal distribution

with mean µ and variance σ 2. Recall from Chapter 7 that the sampling distribution of the

sample mean for a simple random sample of size n from a normal population will be nor-

mally distributed with mean µ and variance σ 2/n. Figure 13.2 illustrates such a sampling

distribution.

Thus, if the null hypothesis is true, we can think of each of the three sample means, 

1 � 62, 2 � 66, and 3 � 52 from Table 13.1, as values drawn at random from the sam-

pling distribution shown in Figure 13.2. In this case, the mean and variance of the three 

values can be used to estimate the mean and variance of the sampling distribution. When

the sample sizes are equal, as in the Chemitech experiment, the best estimate of the mean

of the sampling distribution of is the mean or average of the sample means. Thus, in the

Chemitech experiment, an estimate of the mean of the sampling distribution of is

(62 � 66 � 52)/3 � 60. We refer to this estimate as the overall sample mean. An estimate

of the variance of the sampling distribution of , , is provided by the variance of the three

sample means.

Because � σ 2/n, solving for σ 2 gives

Hence,

The result, � 260, is referred to as the between-treatments estimate of σ 2.

The between-treatments estimate of σ2 is based on the assumption that the null hypoth-

esis is true. In this case, each sample comes from the same population, and there is only

ns2
x̄

Estimate of σ 2
� n (Estimate of σ 2

x̄) � ns2
x̄ � 5(52) � 260

σ 2
� nσ 2

x̄

σ 2
x̄

s2
x̄ �

(62 � 60)2
� (66 � 60)2

� (52 � 60)2

3 � 1
�

104

2
� 52

σ 2
x̄x̄

x̄

x̄

x̄

x̄x̄x̄

x̄

2

x1

Sample means are “close

together” because there is only

one sampling distribution

when H0 is true

µ x2x3

=
n

σ 
x

2
σ 

FIGURE 13.2 SAMPLING DISTRIBUTION OF GIVEN H0 IS TRUEx̄
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one sampling distribution of . To illustrate what happens when H0 is false, suppose the

population means all differ. Note that because the three samples are from normal popu-

lations with different means, they will result in three different sampling distributions. 

Figure 13.3 shows that in this case, the sample means are not as close together as they were

when H0 was true. Thus, will be larger, causing the between-treatments estimate of σ 2

to be larger. In general, when the population means are not equal, the between-treatments

estimate will overestimate the population variance σ 2.

The variation within each of the samples also has an effect on the conclusion we reach

in analysis of variance. When a simple random sample is selected from each population,

each of the sample variances provides an unbiased estimate of σ 2. Hence, we can combine

or pool the individual estimates of σ 2 into one overall estimate. The estimate of σ 2 obtained

in this way is called the pooled or within-treatments estimate of σ 2. Because each sample

variance provides an estimate of σ 2 based only on the variation within each sample, the

within-treatments estimate of σ 2 is not affected by whether the population means are equal.

When the sample sizes are equal, the within-treatments estimate of σ 2 can be obtained by

computing the average of the individual sample variances. For the Chemitech experiment we

obtain

In the Chemitech experiment, the between-treatments estimate of σ 2 (260) is much

larger than the within-treatments estimate of σ 2 (28.33). In fact, the ratio of these two

estimates is 260/28.33 � 9.18. Recall, however, that the between-treatments approach

provides a good estimate of σ 2 only if the null hypothesis is true; if the null hypothesis

is false, the between-treatments approach overestimates σ 2. The within-treatments ap-

proach provides a good estimate of σ 2 in either case. Thus, if the null hypothesis is true,

the two estimates will be similar and their ratio will be close to 1. If the null hypothesis

is false, the between-treatments estimate will be larger than the within-treatments estimate,

and their ratio will be large. In the next section we will show how large this ratio must

be to reject H0.

Within-treatments estimate of σ 2
�

27.5 � 26.5 � 31.0

3
�

85

3
� 28.33

s2
x̄

x̄

µ1 x2x1x3 µ3 µ2

Sample means come from

different sampling distributions

and are not as close together when

H0 is false

FIGURE 13.3 SAMPLING DISTRIBUTIONS OF GIVEN H0 IS FALSEx̄
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In summary, the logic behind ANOVA is based on the development of two independent

estimates of the common population variance σ 2. One estimate of σ 2 is based on the vari-

ability among the sample means themselves, and the other estimate of σ 2 is based on the

variability of the data within each sample. By comparing these two estimates of σ 2, we will

be able to determine whether the population means are equal.

NOTES AND COMMENTS

1. Randomization in experimental design is the
analog of probability sampling in an observa-
tional study.

2. In many medical experiments, potential bias
is eliminated by using a double-blind experi-
mental design. With this design, neither the
physician applying the treatment nor the sub-
ject knows which treatment is being applied.
Many other types of experiments could bene-
fit from this type of design.

3. In this section we provided a conceptual
overview of how analysis of variance can be
used to test for the equality of k population

means for a completely randomized experi-
mental design. We will see that the same pro-
cedure can also be used to test for the equality
of k population means for an observational or
nonexperimental study.

4. In Sections 10.1 and 10.2 we presented statis-
tical methods for testing the hypothesis that the
means of two populations are equal. ANOVA

can also be used to test the hypothesis that the
means of two populations are equal. In prac-
tice, however, analysis of variance is usually
not used except when dealing with three or
more population means.

13.2 Analysis of Variance and the Completely
Randomized Design

In this section we show how analysis of variance can be used to test for the equality of k

population means for a completely randomized design. The general form of the hypotheses

tested is

where

We assume that a simple random sample of size nj has been selected from each of the k popu-

lations or treatments. For the resulting sample data, let

x
 ij �

nj �

x̄j �

s2
j �

sj �

value of observation i for treatment j

number of observations for treatment j

sample mean for treatment j

sample variance for treatment j

sample standard deviation for treatment j

µj � mean of the jth population

H0:

Ha:
 
µ1 � µ2 � . . . � µk

Not all population means are equal
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The formulas for the sample mean and sample variance for treatment j are as follow.

(13.1)

(13.2)

The overall sample mean, denoted , is the sum of all the observations divided by the total

number of observations. That is,

(13.3)

where

(13.4)

If the size of each sample is n, nT � kn; in this case equation (13.3) reduces to

(13.5)

In other words, whenever the sample sizes are the same, the overall sample mean is just the

average of the k sample means.

Because each sample in the Chemitech experiment consists of n � 5 observations, the

overall sample mean can be computed by using equation (13.5). For the data in Table 13.1

we obtained the following result.

If the null hypothesis is true ( µ1 � µ2 � µ3 � µ), the overall sample mean of 60 is the best

estimate of the population mean µ.

Between-Treatments Estimate of Population Variance

In the preceding section, we introduced the concept of a between-treatments estimate of σ 2

and showed how to compute it when the sample sizes were equal. This estimate of σ 2 is

called the mean square due to treatments and is denoted MSTR. The general formula for

computing MSTR is

(13.6)MSTR �

�
k

j�1

 nj 
(x̄

 j � x̄̄
 
)2

k � 1

x̄̄ �
62 � 66 � 52

3
� 60

x̄̄ �

�
k

j�1

 �
nj

i�1

 x
 ij

kn
�

�
k

j�1

 �
nj

i�1

 x
 ij�n

k
�

�
k

j�1

 x̄
 j

k

nT � n1 � n2 � . . . � nk

x̄̄ �

�
k

j�1

 �
nj

i�1

 x
 ij

nT

x̄̄

s2
j �

�
nj

i�1

(x
 ij � x̄

 j)
2

nj � 1

x̄j �

�
nj

i�1
 
x

 ij

nj
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The numerator in equation (13.6) is called the sum of squares due to treatments and is denoted

SSTR. The denominator, k � 1, represents the degrees of freedom associated with SSTR.

Hence, the mean square due to treatments can be computed using the following formula.

MEAN SQUARE DUE TO TREATMENTS

(13.7)

where

(13.8)SSTR � �
k

j�1

 nj 
(x̄

 j � x̄̄
 
)2

MSTR �
SSTR

k � 1

MEAN SQUARE DUE TO ERROR

(13.10)

where

(13.11)SSE � �
k

j�1

(nj � 1)s2
j

MSE �
SSE

nT � k

If H0 is true, MSTR provides an unbiased estimate of σ 2. However, if the means of the k

populations are not equal, MSTR is not an unbiased estimate of σ 2; in fact, in that case,

MSTR should overestimate σ 2.

For the Chemitech data in Table 13.1, we obtain the following results.

Within-Treatments Estimate of Population Variance

Earlier, we introduced the concept of a within-treatments estimate of σ 2 and showed how

to compute it when the sample sizes were equal. This estimate of σ 2 is called the mean

square due to error and is denoted MSE. The general formula for computing MSE is

(13.9)

The numerator in equation (13.9) is called the sum of squares due to error and is denoted

SSE. The denominator of MSE is referred to as the degrees of freedom associated with SSE.

Hence, the formula for MSE can also be stated as follows.

MSE �

�
k

j�1

(nj � 1)s2
j

nT � k

MSTR �
SSTR

k � 1
�

520

2
� 260

SSTR � �
k

j�1

 nj 
(x̄

 j � x̄̄
 
)2

� 5(62 � 60)2
� 5(66 � 60)2

� 5(52 � 60)2
� 520

Note that MSE is based on the variation within each of the treatments; it is not influenced by

whether the null hypothesis is true. Thus, MSE always provides an unbiased estimate of σ 2.
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For the Chemitech data in Table 13.1 we obtain the following results.

Comparing the Variance Estimates: The F Test

If the null hypothesis is true, MSTR and MSE provide two independent, unbiased estimates

of σ 2. Based on the material covered in Chapter 11 we know that for normal populations,

the sampling distribution of the ratio of two independent estimates of σ 2 follows an F dis-

tribution. Hence, if the null hypothesis is true and the ANOVA assumptions are valid, the

sampling distribution of MSTR/MSE is an F distribution with numerator degrees of free-

dom equal to k � 1 and denominator degrees of freedom equal to nT � k. In other words,

if the null hypothesis is true, the value of MSTR/MSE should appear to have been selected

from this F distribution.

However, if the null hypothesis is false, the value of MSTR/MSE will be inflated be-

cause MSTR overestimates σ 2. Hence, we will reject H0 if the resulting value of MSTR/MSE

appears to be too large to have been selected from an F distribution with k � 1 numerator

degrees of freedom and nT � k denominator degrees of freedom. Because the decision to

reject H0 is based on the value of MSTR/MSE, the test statistic used to test for the equality

of k population means is as follows.

MSE �
SSE

nT � k
�

340

15 � 3
�

340

12
� 28.33

SSE � �
k

j�1

(nj � 1)s2
j � (5 � 1)27.5 � (5 � 1)26.5 � (5 � 1)31 � 340

An introduction to the 

F distribution and the 

use of the F distribution

table were presented in

Section 11.2.

TEST STATISTIC FOR THE EQUALITY OF k POPULATION MEANS

(13.12)

The test statistic follows an F distribution with k � 1 degrees of freedom in the

numerator and nT � k degrees of freedom in the denominator.

F �
MSTR

MSE

Let us return to the Chemitech experiment and use a level of significance α � .05 to

conduct the hypothesis test. The value of the test statistic is

The numerator degrees of freedom is k � 1 � 3 � 1 � 2 and the denominator degrees of

freedom is nT � k � 15 � 3 � 12. Because we will only reject the null hypothesis for large

values of the test statistic, the p-value is the upper tail area of the F distribution to the right

of the test statistic F � 9.18. Figure 13.4 shows the sampling distribution of F � MSTR/

MSE, the value of the test statistic, and the upper tail area that is the p-value for the

hypothesis test.

From Table 4 of Appendix B we find the following areas in the upper tail of an F dis-

tribution with 2 numerator degrees of freedom and 12 denominator degrees of freedom.

F �
MSTR

MSE
�

260

28.33
� 9.18

Area in Upper Tail .10 .05 .025 .01

F Value (df1 � 2, df2 � 12) 2.81 3.89 5.10 6.93

F � 9.18
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Because F � 9.18 is greater than 6.93, the area in the upper tail at F � 9.18 is less than .01.

Thus, the p-value is less than .01. Minitab or Excel can be used to show that the exact p-value

is .004. With p-value � α � .05, H0 is rejected. The test provides sufficient evidence to con-

clude that the means of the three populations are not equal. In other words, analysis of vari-

ance supports the conclusion that the population mean number of units produced per week

for the three assembly methods are not equal.

As with other hypothesis testing procedures, the critical value approach may also be

used. With α � .05, the critical F value occurs with an area of .05 in the upper tail of

an F distribution with 2 and 12 degrees of freedom. From the F distribution table, we

find F.05 � 3.89. Hence, the appropriate upper tail rejection rule for the Chemitech

experiment is

With F � 9.18, we reject H0 and conclude that the means of the three populations are not

equal. A summary of the overall procedure for testing for the equality of k population means

follows.

Reject H0 if F � 3.89

F = 9.18
MSTR/MSE

p-value

Sampling distribution

of MSTR/MSE

FIGURE 13.4 COMPUTATION OF p-VALUE USING THE SAMPLING DISTRIBUTION 

OF MSTR/MSE

TEST FOR THE EQUALITY OF k POPULATION MEANS

TEST STATISTIC

REJECTION RULE

where the value of Fα is based on an F distribution with k � 1 numerator degrees of

freedom and nT � k denominator degrees of freedom.

p-value approach:

Critical value approach:
  

Reject H0 if p-value � α

Reject H0 if F � Fα

F �
MSTR

MSE

H0:

Ha:
 
µ1 � µ2 � . . . � µk

Not all population means are equal

Appendix F shows how to

compute p-values using

Minitab or Excel.
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ANOVA Table

The results of the preceding calculations can be displayed conveniently in a table referred

to as the analysis of variance or ANOVA table. The general form of the ANOVA table for

a completely randomized design is shown in Table 13.2; Table 13.3 is the corresponding

ANOVA table for the Chemitech experiment. The sum of squares associated with the source

of variation referred to as “Total” is called the total sum of squares (SST). Note that the re-

sults for the Chemitech experiment suggest that SST � SSTR � SSE, and that the degrees

of freedom associated with this total sum of squares is the sum of the degrees of freedom

associated with the sum of squares due to treatments and the sum of squares due to error.

We point out that SST divided by its degrees of freedom nT � 1 is nothing more than

the overall sample variance that would be obtained if we treated the entire set of 15 obser-

vations as one data set. With the entire data set as one sample, the formula for computing

the total sum of squares, SST, is

(13.13)

It can be shown that the results we observed for the analysis of variance table for the

Chemitech experiment also apply to other problems. That is,

(13.14)

In other words, SST can be partitioned into two sums of squares: the sum of squares due to

treatments and the sum of squares due to error. Note also that the degrees of freedom cor-

responding to SST, nT � 1, can be partitioned into the degrees of freedom corresponding to

SSTR, k � 1, and the degrees of freedom corresponding to SSE, nT � k. The analysis of

variance can be viewed as the process of partitioning the total sum of squares and the de-

grees of freedom into their corresponding sources: treatments and error. Dividing the sum

of squares by the appropriate degrees of freedom provides the variance estimates, the

F value, and the p-value used to test the hypothesis of equal population means.

SST � SSTR � SSE

SST � �
k

j�1

 �
nj

i�1

(x
 ij � x̄̄

 
)2

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Treatments SSTR

Error SSE

Total SST nT � 1

MSE �
SSE

nT � k
nT � k

MSTR

MSE
MSTR �

SSTR

k � 1
k � 1

TABLE 13.2 ANOVA TABLE FOR A COMPLETELY RANDOMIZED DESIGN

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Treatments 520 2 260.00 9.18 .004

Error 340 12 28.33

Total 860 14

TABLE 13.3 ANALYSIS OF VARIANCE TABLE FOR THE CHEMITECH EXPERIMENT

Analysis of variance can be

thought of as a statistical

procedure for partitioning

the total sum of squares

into separate components.
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Computer Results for Analysis of Variance

Using statistical computer packages, analysis of variance computations with large sample

sizes or a large number of populations can be performed easily. Appendixes 13.1 – 13.3

show the steps required to use Minitab, Excel, and StatTools to perform the analysis of vari-

ance computations. In Figure 13.5 we show output for the Chemitech experiment obtained

using Minitab. The first part of the computer output contains the familiar ANOVA table for-

mat. Comparing Figure 13.5 with Table 13.3, we see that the same information is available,

although some of the headings are slightly different. The heading Source is used for the

source of variation column, Factor identifies the treatments row, and the sum of squares and

degrees of freedom columns are interchanged.

Note that following the ANOVA table the computer output contains the respective

sample sizes, the sample means, and the standard deviations. In addition, Minitab provides

a figure that shows individual 95% confidence interval estimates of each population mean.

In developing these confidence interval estimates, Minitab uses MSE as the estimate of σ 2.

Thus, the square root of MSE provides the best estimate of the population standard devia-

tion σ. This estimate of σ on the computer output is Pooled StDev; it is equal to 5.323. To

provide an illustration of how these interval estimates are developed, we will compute a

95% confidence interval estimate of the population mean for method A.

From our study of interval estimation in Chapter 8, we know that the general form of

an interval estimate of a population mean is

(13.15)

where s is the estimate of the population standard deviation σ. Because the best estimate of

σ is provided by the Pooled StDev, we use a value of 5.323 for s in expression (13.15). The

degrees of freedom for the t value is 12, the degrees of freedom associated with the error

sum of squares. Hence, with t.025 � 2.179 we obtain

62 � 2.179 
5.323

�5
� 62 � 5.19

x̄ � tα/2 
s

�n

Source     DF        SS       MS        F        P

Factor      2     520.0    260.0     9.18    0.004

Error      12     340.0     28.3

Total      14     860.0

S � 5.323     R-Sq � 60.47% R-Sq(adj) � 53.88%

Individual 95% CIs For Mean Based on

Pooled StDev

Level      N      Mean    StDev  ---+---------+---------+---------+------

A 5    62.000    5.244                (-------*-------)

B 5    66.000    4.148                       (------*-------)

C 5    52.000    5.568  (------*-------)

---+---------+---------+---------+------

Pooled StDev � 5.323              49.0      56.0      63.0      70.0

FIGURE 13.5 MINITAB OUTPUT FOR THE CHEMITECH EXPERIMENT ANALYSIS OF VARIANCE
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Thus, the individual 95% confidence interval for method A goes from 62 � 5.19 � 56.81

to 62 � 5.19 � 67.19. Because the sample sizes are equal for the Chemitech experiment, the

individual confidence intervals for methods B and C are also constructed by adding and sub-

tracting 5.19 from each sample mean. Thus, in the figure provided by Minitab we see that

the widths of the confidence intervals are the same.

Testing for the Equality of k Population Means: 
An Observational Study

We have shown how analysis of variance can be used to test for the equality of k population

means for a completely randomized experimental design. It is important to understand that

ANOVA can also be used to test for the equality of three or more population means using

data obtained from an observational study. As an example, let us consider the situation at

National Computer Products, Inc. (NCP).

NCP manufactures printers and fax machines at plants located in Atlanta, Dallas, and

Seattle. To measure how much employees at these plants know about quality management,

a random sample of six employees was selected from each plant and the employees selected

were given a quality awareness examination. The examination scores for these 18 employ-

ees are shown in Table 13.4. The sample means, sample variances, and sample standard

deviations for each group are also provided. Managers want to use these data to test the

hypothesis that the mean examination score is the same for all three plants.

We define population 1 as all employees at the Atlanta plant, population 2 as all

employees at the Dallas plant, and population 3 as all employees at the Seattle plant. Let

�1 � mean examination score for population 1

�2 � mean examination score for population 2

�3 � mean examination score for population 3

Although we will never know the actual values of �1, �2, and �3, we want to use the sample

results to test the following hypotheses.

H0: �1 � �2 � �3

Ha: Not all population means are equal

Note that the hypothesis test for the NCP observational study is exactly the same as the

hypothesis test for the Chemitech experiment. Indeed, the same analysis of variance

Plant 1 Plant 2 Plant 3
Atlanta Dallas Seattle

85 71 59

75 75 64

82 73 62

76 74 69

71 69 75

85 82 67

Sample mean 79 74 66

Sample variance 34 20 32

Sample standard deviation 5.83 4.47 5.66

TABLE 13.4 EXAMINATION SCORES FOR 18 EMPLOYEES

fileWEB
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methodology we used to analyze the Chemitech experiment can also be used to analyze the

data from the NCP observational study.

Even though the sameANOVAmethodology is used for the analysis, it is worth noting how

the NCP observational statistical study differs from the Chemitech experimental statistical

study. The individuals who conducted the NCP study had no control over how the plants were

assigned to individual employees. That is, the plants were already in operation and a particular

employee worked at one of the three plants.All that NCPcould do was to select a random sam-

ple of 6 employees from each plant and administer the quality awareness examination. To be

classified as an experimental study, NCP would have had to be able to randomly select 18 em-

ployees and then assign the plants to each employee in a random fashion.

Exercises

Methods

1. The following data are from a completely randomized design.

NOTES AND COMMENTS

1. The overall sample mean can also be computed
as a weighted average of the k sample means.

In problems where the sample means are pro-
vided, this formula is simpler thanequation(13.3)
for computing the overall mean.

2. If each sample consists of n observations, equa-
tion (13.6) can be written as

Note that this result is the same as presented in
Section 13.1 when we introduced the concept 

� ns2
x̄

MSTR �

n �
k

j� 1

(x̄ j � x̄̄)2

k � 1
� n��

k

j� 1

(x̄ j � x̄̄)2

k � 1
�

x̄̄ �
n1x̄1 � n2 x̄2 � . . . � nk  

x̄k

nT

of the between-treatments estimate of σ 2. Equa-
tion (13.6) is simply a generalization of this result
to the unequal sample-size case.

3. If each sample has n observations, nT � kn;
thus, nT � k � k(n � 1), and equation (13.9) can
be rewritten as

In other words, if the sample sizes are the
same, MSE is just the average of the k sample
variances. Note that it is the same result we
used in Section 13.1 when we introduced
the concept of the within-treatments estimate
of σ2.

MSE �

�
k

j� 1

(n � 1)s2
j

k(n � 1)
�

(n � 1) �
k

j� 1

 s2
j

k(n � 1)
�

�
k

j� 1

 s2
j

k

testSELF

Treatment

A B C

162 142 126
142 156 122
165 124 138
145 142 140
148 136 150
174 152 128

Sample mean 156 142 134

Sample variance 164.4 131.2 110.4

a. Compute the sum of squares between treatments.

b. Compute the mean square between treatments.

Exercise 8 will ask you to

analyze the NCP data using

the analysis of variance

procedure.
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c. Compute the sum of squares due to error.

d. Compute the mean square due to error.

e. Set up the ANOVA table for this problem.

f. At the α � .05 level of significance, test whether the means for the three treatments

are equal.

2. In a completely randomized design, seven experimental units were used for each of the five

levels of the factor. Complete the following ANOVA table.

6. Develop the analysis of variance computations for the following completely randomized

design. At α � .05, is there a significant difference between the treatment means?

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Treatments 300 
Error 
Total 460

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Treatments 1200
Error 
Total 1800

Treatment

A B C

136 107 92
120 114 82
113 125 85
107 104 101
131 107 89
114 109 117
129 97 110
102 114 120

104 98
89 106

119 107 100

146.86 96.44 173.78s2
j

x̄j

3. Refer to exercise 2.

a. What hypotheses are implied in this problem?

b. At the α � .05 level of significance, can we reject the null hypothesis in part (a)? Explain.

4. In an experiment designed to test the output levels of three different treatments, the following

results were obtained: SST � 400, SSTR � 150, nT � 19. Set up the ANOVA table and test for

any significant difference between the mean output levels of the three treatments. Use α � .05.

5. In a completely randomized design, 12 experimental units were used for the first treatment,

15 for the second treatment, and 20 for the third treatment. Complete the following analy-

sis of variance. At a .05 level of significance, is there a significant difference between the

treatments?

fileWEB
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Applications

7. Three different methods for assembling a product were proposed by an industrial engineer.

To investigate the number of units assembled correctly with each method, 30 employees

were randomly selected and randomly assigned to the three proposed methods in such a

way that each method was used by 10 workers. The number of units assembled correctly

was recorded, and the analysis of variance procedure was applied to the resulting data set.

The following results were obtained: SST � 10,800; SSTR � 4560.

a. Set up the ANOVA table for this problem.

b. Use α � .05 to test for any significant difference in the means for the three assem-

bly methods.

8. Refer to the NCP data in Table 13.4. Set up the ANOVA table and test for any significant

difference in the mean examination score for the three plants. Use α � .05.

9. To study the effect of temperature on yield in a chemical process, five batches were pro-

duced at each of three temperature levels. The results follow. Construct an analysis of vari-

ance table. Use a .05 level of significance to test whether the temperature level has an effect

on the mean yield of the process.

Temperature

50° C 60° C 70° C

34 30 23
24 31 28
36 34 28
39 23 30
32 27 31

Direct Indirect Combination

17.0 16.6 25.2
18.5 22.2 24.0
15.8 20.5 21.5
18.2 18.3 26.8
20.2 24.2 27.5
16.0 19.8 25.8
13.3 21.2 24.2

10. Auditors must make judgments about various aspects of an audit on the basis of their

own direct experience, indirect experience, or a combination of the two. In a study, au-

ditors were asked to make judgments about the frequency of errors to be found in an

audit. The judgments by the auditors were then compared to the actual results. Suppose

the following data were obtained from a similar study; lower scores indicate better

judgments.

Use α � .05 to test to see whether the basis for the judgment affects the quality of the judg-

ment. What is your conclusion?

11. Four different paints are advertised as having the same drying time. To check the manu-

facturer’s claims, five samples were tested for each of the paints. The time in minutes until

the paint was dry enough for a second coat to be applied was recorded. The following data

were obtained.

fileWEB
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At the α � .05 level of significance, test to see whether the mean drying time is the same

for each type of paint.

12. The Consumer Reports Restaurant Customer Satisfaction Survey is based upon 148,599

visits to full-service restaurant chains (Consumer Reports website). One of the variables in

the study is meal price, the average amount paid per person for dinner and drinks, minus

the tip. Suppose a reporter for the Sun Coast Times thought that it would be of interest to

her readers to conduct a similar study for restaurants located on the Grand Strand section

in Myrtle Beach, South Carolina. The reporter selected a sample of eight seafood restau-

rants, eight Italian restaurants, and eight steakhouses. The following data show the meal

prices ($) obtained for the 24 restaurants sampled. Use α � .05 to test whether there is a

significant difference among the mean meal price for the three types of restaurants.

Paint 1 Paint 2 Paint 3 Paint 4

128 144 133 150
137 133 143 142
135 142 137 135
124 146 136 140
141 130 131 153

Italian Seafood Steakhouse

$12 $16 $24
13 18 19
15 17 23
17 26 25
18 23 21
20 15 22
17 19 27
24 18 31

13.3 Multiple Comparison Procedures

When we use analysis of variance to test whether the means of k populations are equal,

rejection of the null hypothesis allows us to conclude only that the population means are not

all equal. In some cases we will want to go a step further and determine where the differences

among means occur. The purpose of this section is to show how multiple comparison

procedures can be used to conduct statistical comparisons between pairs of popula-

tion means.

Fisher’s LSD

Suppose that analysis of variance provides statistical evidence to reject the null hypothesis

of equal population means. In this case, Fisher’s least significant difference (LSD) proce-

dure can be used to determine where the differences occur. To illustrate the use of Fisher’s

LSD procedure in making pairwise comparisons of population means, recall the Chemitech

experiment introduced in Section 13.1. Using analysis of variance, we concluded that the

mean number of units produced per week are not the same for the three assembly methods.

In this case, the follow-up question is: We believe the assembly methods differ, but where

do the differences occur? That is, do the means of populations 1 and 2 differ? Or those of

populations 1 and 3? Or those of populations 2 and 3?

In Chapter 10 we presented a statistical procedure for testing the hypothesis that the

means of two populations are equal. With a slight modification in how we estimate the
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Let us now apply this procedure to determine whether there is a significant difference

between the means of population 1 (method A) and population 2 (method B) at the

α � .05 level of significance. Table 13.1 showed that the sample mean is 62 for method A

and 66 for method B. Table 13.3 showed that the value of MSE is 28.33; it is the estimate

of σ 2 and is based on 12 degrees of freedom. For the Chemitech data the value of the test

statistic is

Because we have a two-tailed test, the p-value is two times the area under the curve for

the t distribution to the left of t � �1.19. Using Table 2 in Appendix B, the t distribution

table for 12 degrees of freedom provides the following information.

t �
62 � 66

�28.33�1

5
�

1

5	
� �1.19

FISHER’S LSD PROCEDURE

TEST STATISTIC

(13.16)

REJECTION RULE

where the value of tα/2 is based on a t distribution with nT � k degrees of freedom.

p-value approach:

Critical value approach:
  

Reject H0 if p-value � α

Reject H0 if t � �tα/2 or t � tα/2

t �

x̄i � x̄j

�MSE�1

ni

�
1

nj
	

H0:

Ha:
 
µi � µj

µi � µj

Appendix F shows how to

compute p-values using

Excel or Minitab.

Area in Upper Tail .20 .10 .05 .025 .01 .005

t Value (12 df ) .873 1.356 1.782 2.179 2.681 3.055

t � 1.19

The t distribution table only contains positive t values. Because the t distribution is sym-

metric, however, we can find the area under the curve to the right of t � 1.19 and double

it to find the p-value corresponding to t � �1.19. We see that t � 1.19 is between .20 and

.10. Doubling these amounts, we see that the p-value must be between .40 and .20. Excel

or Minitab can be used to show that the exact p-value is .2571. Because the p-value is

greater than α � .05, we cannot reject the null hypothesis. Hence, we cannot conclude

that the population mean number of units produced per week for method A is different

from the population mean for method B.

population variance, Fisher’s LSD procedure is based on the t test statistic presented for 

the two-population case. The following table summarizes Fisher’s LSD procedure.
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For the Chemitech experiment the value of LSD is

Note that when the sample sizes are equal, only one value for LSD is computed. In such

cases we can simply compare the magnitude of the difference between any two sample

means with the value of LSD. For example, the difference between the sample means for

population 1 (method A) and population 3 (method C) is 62 � 52 � 10. This difference is

greater than LSD � 7.34, which means we can reject the null hypothesis that the popula-

tion mean number of units produced per week for method A is equal to the population mean

for method C. Similarly, with the difference between the sample means for populations 2

and 3 of 66 � 52 � 14 	 7.34, we can also reject the hypothesis that the population mean

for method B is equal to the population mean for method C. In effect, our conclusion is that

methods A and B both differ from method C.

Fisher’s LSD can also be used to develop a confidence interval estimate of the difference

between the means of two populations. The general procedure follows.

LSD � 2.179�28.33�1

5
�

1

5	 � 7.34

FISHER’S LSD PROCEDURE BASED ON THE TEST STATISTIC 

TEST STATISTIC

REJECTION RULE AT A LEVEL OF SIGNIFICANCE α

where

(13.17)LSD � tα/2�MSE�1

ni

�
1

nj
	

Reject H0 if 
 x̄i � x̄j
 � LSD

x̄i � x̄j

H0:

Ha:
 
µi � µj

µi � µj

x̄i � x̄j

CONFIDENCE INTERVAL ESTIMATE OF THE DIFFERENCE BETWEEN TWO

POPULATION MEANS USING FISHER’S LSD PROCEDURE

(13.18)

where

(13.19)

and tα/2 is based on a t distribution with nT � k degrees of freedom.

LSD � tα/2�MSE�1

ni

�
1

nj
	

x̄i � x̄j � LSD

Many practitioners find it easier to determine how large the difference between the

sample means must be to reject H0. In this case the test statistic is and the test is

conducted by the following procedure.

x̄i � x̄j,
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If the confidence interval in expression (13.18) includes the value zero, we cannot reject the

hypothesis that the two population means are equal. However, if the confidence interval does

not include the value zero, we conclude that there is a difference between the population

means. For the Chemitech experiment, recall that LSD � 7.34 (corresponding to t.025 � 2.179).

Thus, a 95% confidence interval estimate of the difference between the means of populations 1

and 2 is 62 � 66 � 7.34 � �4 � 7.34 � �11.34 to 3.34; because this interval includes zero,

we cannot reject the hypothesis that the two population means are equal.

Type I Error Rates

We began the discussion of Fisher’s LSD procedure with the premise that analysis of vari-

ance gave us statistical evidence to reject the null hypothesis of equal population means.

We showed how Fisher’s LSD procedure can be used in such cases to determine where

the differences occur. Technically, it is referred to as a protected or restricted LSD test

because it is employed only if we first find a significant F value by using analysis of vari-

ance. To see why this distinction is important in multiple comparison tests, we need to

explain the difference between a comparisonwise Type I error rate and an experimentwise

Type I error rate.

In the Chemitech experiment we used Fisher’s LSD procedure to make three pairwise

comparisons.

Test 1 Test 2 Test 3

In each case, we used a level of significance of α � .05. Therefore, for each test, if the null

hypothesis is true, the probability that we will make a Type I error is α � .05; hence, the

probability that we will not make a Type I error on each test is 1 � .05 � .95. In discussing

multiple comparison procedures we refer to this probability of a Type I error (α � .05) as

the comparisonwise Type I error rate; comparisonwise Type I error rates indicate the 

level of significance associated with a single pairwise comparison.

Let us now consider a slightly different question. What is the probability that in making

three pairwise comparisons, we will commit a Type I error on at least one of the three tests?

To answer this question, note that the probability that we will not make a Type I error on any

of the three tests is (.95)(.95)(.95) � .8574.1 Therefore, the probability of making at least one

Type I error is 1 � .8574 � .1426. Thus, when we use Fisher’s LSD procedure to make all

three pairwise comparisons, the Type I error rate associated with this approach is not .05, but

actually .1426; we refer to this error rate as the overall or experimentwise Type I error rate.

To avoid confusion, we denote the experimentwise Type I error rate as αEW.

The experimentwise Type I error rate gets larger for problems with more populations.

For example, a problem with five populations has 10 possible pairwise comparisons. If we

tested all possible pairwise comparisons by using Fisher’s LSD with a comparisonwise error

rate of α � .05, the experimentwise Type I error rate would be 1 � (1 � .05)10
� .40. In such

cases, practitioners look to alternatives that provide better control over the experimentwise

error rate.

One alternative for controlling the overall experimentwise error rate, referred to as the

Bonferroni adjustment, involves using a smaller comparisonwise error rate for each test. For

example, if we want to test C pairwise comparisons and want the maximum probability of

H0:

Ha:
 
µ2 � µ3

µ2 � µ3

H0:

Ha:
 
µ1 � µ3

µ1 � µ3

H0:

Ha:
 
µ1 � µ2

µ1 � µ2

1The assumption is that the three tests are independent, and hence the joint probability of the three events can be obtained
by simply multiplying the individual probabilities. In fact, the three tests are not independent because MSE is used in each test;
therefore, the error involved is even greater than that shown.
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making a Type I error for the overall experiment to be αEW, we simply use a comparison-

wise error rate equal to αEW/C. In the Chemitech experiment, if we want to use Fisher’s LSD

procedure to test all three pairwise comparisons with a maximum experimentwise error rate

of αEW � .05, we set the comparisonwise error rate to be α � .05/3 � .017. For a problem

with five populations and 10 possible pairwise comparisons, the Bonferroni adjustment

would suggest a comparisonwise error rate of .05/10 � .005. Recall from our discussion of

hypothesis testing in Chapter 9 that for a fixed sample size, any decrease in the probability

of making a Type I error will result in an increase in the probability of making a Type II

error, which corresponds to accepting the hypothesis that the two population means are

equal when in fact they are not equal. As a result, many practitioners are reluctant to per-

form individual tests with a low comparisonwise Type I error rate because of the increased

risk of making a Type II error.

Several other procedures, such as Tukey’s procedure and Duncan’s multiple range test,

have been developed to help in such situations. However, there is considerable controversy

in the statistical community as to which procedure is “best.” The truth is that no one proce-

dure is best for all types of problems.

Exercises

Methods

13. The following data are from a completely randomized design.

a. At the α � .05 level of significance, can we reject the null hypothesis that the means

of the three treatments are equal?

b. Use Fisher’s LSD procedure to test whether there is a significant difference between

the means for treatments A and B, treatments A and C, and treatments B and C. Use

α � .05.

c. Use Fisher’s LSD procedure to develop a 95% confidence interval estimate of the

difference between the means of treatments A and B.

14. The following data are from a completely randomized design. In the following calcula-

tions, use α � .05.

testSELF

Treatment Treatment Treatment 
A B C

32 44 33
30 43 36
30 44 35
26 46 36
32 48 40

Sample mean 30 45 36
Sample variance 6.00 4.00 6.50

Treatment Treatment Treatment 
1 2 3

63 82 69
47 72 54
54 88 61
40 66 48

51 77 58

96.67 97.34 81.99s2
j

x̄j
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a. Use analysis of variance to test for a significant difference among the means of the

three treatments.

b. Use Fisher’s LSD procedure to determine which means are different.

Applications

15. To test whether the mean time needed to mix a batch of material is the same for machines

produced by three manufacturers, the Jacobs Chemical Company obtained the following data

on the time (in minutes) needed to mix the material.

Manufacturer

1 2 3

20 28 20
26 26 19
24 31 23
22 27 22

a. Use these data to test whether the population mean times for mixing a batch of material

differ for the three manufacturers. Use α � .05.

b. At the α � .05 level of significance, use Fisher’s LSD procedure to test for the equality

of the means for manufacturers 1 and 3. What conclusion can you draw after carrying

out this test?

16. Refer to exercise 15. Use Fisher’s LSD procedure to develop a 95% confidence interval

estimate of the difference between the means for manufacturer 1 and manufacturer 2.

17. The following data are from an experiment designed to investigate the perception of cor-

porate ethical values among individuals specializing in marketing (higher scores indicate

higher ethical values).

Marketing Managers Marketing Research Advertising

6 5 6
5 5 7
4 4 6
5 4 5
6 5 6
4 4 6

a. Use α � .05 to test for significant differences in perception among the three groups.

b. At the α � .05 level of significance, we can conclude that there are differences in the

perceptions for marketing managers, marketing research specialists, and advertising

specialists. Use the procedures in this section to determine where the differences

occur. Use α � .05.

18. To test for any significant difference in the number of hours between breakdowns for four

machines, the following data were obtained.

Machine 1 Machine 2 Machine 3 Machine 4

6.4 8.7 11.1 9.9
7.8 7.4 10.3 12.8
5.3 9.4 9.7 12.1
7.4 10.1 10.3 10.8
8.4 9.2 9.2 11.3
7.3 9.8 8.8 11.5

testSELF

testSELF
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a. At the α � .05 level of significance, what is the difference, if any, in the population

mean times among the four machines?

b. Use Fisher’s LSD procedure to test for the equality of the means for machines 2 and

4. Use a .05 level of significance.

19. Refer to exercise 18. Use the Bonferroni adjustment to test for a significant difference

between all pairs of means. Assume that a maximum overall experimentwise error rate of

.05 is desired.

20. The International League of Triple-A minor league baseball consists of 14 teams organized

into three divisions: North, South, and West. The following data show the average atten-

dance for the 14 teams in the International League (The Biz of Baseball website, January

2009). Also shown are the teams’ records; W denotes the number of games won, L denotes

the number of games lost, and PCT is the proportion of games played that were won.

a. Use α � .05 to test for any difference in the mean attendance for the three divisions.

b. Use Fisher’s LSD procedure to determine where the differences occur. Use 

α � .05.

13.4 Randomized Block Design

Thus far we have considered the completely randomized experimental design. Recall that

to test for a difference among treatment means, we computed an F value by using the ratio

(13.20)

A problem can arise whenever differences due to extraneous factors (ones not consid-

ered in the experiment) cause the MSE term in this ratio to become large. In such cases, the

F value in equation (13.20) can become small, signaling no difference among treatment

means when in fact such a difference exists.

In this section we present an experimental design known as a randomized block

design. Its purpose is to control some of the extraneous sources of variation by removing

such variation from the MSE term. This design tends to provide a better estimate of the true

error variance and leads to a more powerful hypothesis test in terms of the ability to detect

F �
MSTR

MSE

Team Name Division W L PCT Attendance

Buffalo Bisons North 66 77 .462 8812
Lehigh Valley IronPigs North 55 89 .382 8479
Pawtucket Red Sox North 85 58 .594 9097
Rochester Red Wings North 74 70 .514 6913
Scranton-Wilkes Barre Yankees North 88 56 .611 7147
Syracuse Chiefs North 69 73 .486 5765
Charlotte Knights South 63 78 .447 4526
Durham Bulls South 74 70 .514 6995
Norfolk Tides South 64 78 .451 6286
Richmond Braves South 63 78 .447 4455
Columbus Clippers West 69 73 .486 7795
Indianapolis Indians West 68 76 .472 8538
Louisville Bats West 88 56 .611 9152
Toledo Mud Hens West 75 69 .521 8234

A completely randomized

design is useful when the

experimental units are

homogeneous. If the

experimental units are

heterogeneous, blocking is

often used to form

homogeneous groups.
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differences among treatment means. To illustrate, let us consider a stress study for air traf-

fic controllers.

Air Traffic Controller Stress Test

A study measuring the fatigue and stress of air traffic controllers resulted in proposals for

modification and redesign of the controller’s work station. After consideration of several

designs for the work station, three specific alternatives are selected as having the best

potential for reducing controller stress. The key question is: To what extent do the three

alternatives differ in terms of their effect on controller stress? To answer this question, we

need to design an experiment that will provide measurements of air traffic controller stress

under each alternative.

In a completely randomized design, a random sample of controllers would be assigned

to each work station alternative. However, controllers are believed to differ substantially in

their ability to handle stressful situations. What is high stress to one controller might be only

moderate or even low stress to another. Hence, when considering the within-group source

of variation (MSE), we must realize that this variation includes both random error and error

due to individual controller differences. In fact, managers expected controller variability to

be a major contributor to the MSE term.

One way to separate the effect of the individual differences is to use a randomized block

design. Such a design will identify the variability stemming from individual controller dif-

ferences and remove it from the MSE term. The randomized block design calls for a single

sample of controllers. Each controller in the sample is tested with each of the three work

station alternatives. In experimental design terminology, the work station is the factor of

interest and the controllers are the blocks. The three treatments or populations associated

with the work station factor correspond to the three work station alternatives. For simplicity,

we refer to the work station alternatives as system A, system B, and system C.

The randomized aspect of the randomized block design is the random order in which

the treatments (systems) are assigned to the controllers. If every controller were to test the

three systems in the same order, any observed difference in systems might be due to the

order of the test rather than to true differences in the systems.

To provide the necessary data, the three work station alternatives were installed at the

Cleveland Control Center in Oberlin, Ohio. Six controllers were selected at random and

assigned to operate each of the systems. A follow-up interview and a medical examination

of each controller participating in the study provided a measure of the stress for each con-

troller on each system. The data are reported in Table 13.5.

Table 13.6 is a summary of the stress data collected. In this table we include column totals

(treatments) and row totals (blocks) as well as some sample means that will be helpful in

Experimental studies in

business often involve

experimental units that are

highly heterogeneous; as a

result, randomized block

designs are often employed.

Blocking in experimental

design is similar to

stratification in sampling.

Treatments

System A System B System C

Controller 1 15 15 18

Controller 2 14 14 14

Blocks
Controller 3 10 11 15

Controller 4 13 12 17

Controller 5 16 13 16

Controller 6 13 13 13

TABLE 13.5 A RANDOMIZED BLOCK DESIGN FOR THE AIR TRAFFIC CONTROLLER

STRESS TEST
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making the sum of squares computations for the ANOVA procedure. Because lower stress val-

ues are viewed as better, the sample data seem to favor system B with its mean stress rating of

13. However, the usual question remains: Do the sample results justify the conclusion that the

population mean stress levels for the three systems differ? That is, are the differences statisti-

cally significant? An analysis of variance computation similar to the one performed for the

completely randomized design can be used to answer this statistical question.

ANOVA Procedure

The ANOVA procedure for the randomized block design requires us to partition the sum of

squares total (SST) into three groups: sum of squares due to treatments (SSTR), sum of

squares due to blocks (SSBL), and sum of squares due to error (SSE). The formula for this

partitioning follows.

(13.21)

This sum of squares partition is summarized in the ANOVA table for the randomized block

design as shown in Table 13.7. The notation used in the table is

Note that the ANOVA table also shows how the nT � 1 total degrees of freedom are

partitioned such that k � 1 degrees of freedom go to treatments, b � 1 go to blocks, and

(k � 1)(b � 1) go to the error term. The mean square column shows the sum of squares

divided by the degrees of freedom, and F � MSTR/MSE is the F ratio used to test for a sig-

nificant difference among the treatment means. The primary contribution of the randomized

block design is that, by including blocks, we remove the individual controller differences

from the MSE term and obtain a more powerful test for the stress differences in the three

work station alternatives.

k �

b �

nT �

the number of treatments

the number of blocks

the total sample size (nT � kb)

SST � SSTR � SSBL � SSE

Treatments Row or
System A System B System C Block Totals Block Means

Controller 1 15 15 18 48

Controller 2 14 14 14 42

Blocks Controller 3 10 11 15 36

Controller 4 13 12 17 42

Controller 5 16 13 16 45

Controller 6 13 13 13 39

81 78 93 252

� 15.5� 13.0� 13.5

x̄.3 �
93

6
x̄.2 �

78

6
x̄.1 �

81

6

Treatment
Means

x̄̄ �
252

18
� 14.0

Column or
Treatment
Totals

x̄6. � 39/3 � 13.0

x̄5. � 45/3 � 15.0

x̄4. � 42/3 � 14.0

x̄3. � 36/3 � 12.0

x̄2. � 42/3 � 14.0

x̄1. � 48/3 � 16.0

TABLE 13.6 SUMMARY OF STRESS DATA FOR THE AIR TRAFFIC CONTROLLER STRESS TEST
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Computations and Conclusions

To compute the F statistic needed to test for a difference among treatment means with a

randomized block design, we need to compute MSTR and MSE. To calculate these two

mean squares, we must first compute SSTR and SSE; in doing so, we will also compute

SSBL and SST. To simplify the presentation, we perform the calculations in four steps. In

addition to k, b, and nT as previously defined, the following notation is used.

Step 1. Compute the total sum of squares (SST).

(13.22)

Step 2. Compute the sum of squares due to treatments (SSTR).

(13.23)

Step 3. Compute the sum of squares due to blocks (SSBL).

(13.24)

Step 4. Compute the sum of squares due to error (SSE).

(13.25)

For the air traffic controller data in Table 13.6, these steps lead to the following sums of squares.

Step 1. SST � (15 � 14)2
� (15 � 14)2

� (18 � 14)2
� . . . � (13 � 14)2

� 70

Step 2. SSTR � 6[(13.5 � 14)2
� (13.0 � 14)2

� (15.5 � 14)2] � 21

Step 3. SSBL � 3[(16 � 14)2
� (14 � 14)2

� (12 � 14)2
� (14 � 14)2

�

(15 � 14)2
� (13 � 14)2] � 30

Step 4. SSE � 70 � 21 � 30 � 19

SSE � SST � SSTR � SSBL

SSBL � k �
b

i�1

(x̄i. � x̄̄
 
)2

SSTR � b �
k

j�1

(x̄.j � x̄̄
 
)2

SST � �
b

i�1

 �
k

j�1

(xij � x̄̄)2

xij �

x̄.j �

x̄i. �

x̄̄ �

value of the observation corresponding to treatment j in block i

sample mean of the jth treatment

sample mean for the ith block

overall sample mean

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Treatments SSTR

Blocks SSBL

Error SSE

Total SST nT � 1

MSE �
SSE

(k � 1)(b � 1)
(k � 1)(b � 1)

MSBL �
SSBL

b � 1
b � 1

MSTR

MSE
MSTR �

SSTR

k � 1
k � 1

TABLE 13.7 ANOVA TABLE FOR THE RANDOMIZED BLOCK DESIGN 

WITH k TREATMENTS AND b BLOCKS
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These sums of squares divided by their degrees of freedom provide the corresponding mean

square values shown in Table 13.8.

Let us use a level of significance α � .05 to conduct the hypothesis test. The value of

the test statistic is

The numerator degrees of freedom is k � 1 � 3 � 1 � 2 and the denominator degrees of free-

dom is (k � 1)(b � 1) � (3 � 1)(6 � 1) � 10. Because we will only reject the null hypothesis

for large values of the test statistic, the p-value is the area under the F distribution to the right of

F � 5.53. From Table 4 of Appendix B we find that with the degrees of freedom 2 and 10,

F � 5.53 is between F.025 � 5.46 and F.01 � 7.56. As a result, the area in the upper tail, or the

p-value, is between .01 and .025. Alternatively, we can use Excel or Minitab to show that the

exact p-value for F � 5.53 is .024. With p-value � α � .05, we reject the null hypothesis 

H0: µ1 � µ2 � µ3 and conclude that the population mean stress levels differ for the three work

station alternatives.

Some general comments can be made about the randomized block design. The experi-

mental design described in this section is a complete block design; the word “complete” in-

dicates that each block is subjected to all k treatments. That is, all controllers (blocks) were

tested with all three systems (treatments). Experimental designs in which some but not all

treatments are applied to each block are referred to as incomplete block designs. A discus-

sion of incomplete block designs is beyond the scope of this text.

Because each controller in the air traffic controller stress test was required to use all

three systems, this approach guarantees a complete block design. In some cases, however,

blocking is carried out with “similar” experimental units in each block. For example, as-

sume that in a pretest of air traffic controllers, the population of controllers was divided into

groups ranging from extremely high-stress individuals to extremely low-stress individuals.

The blocking could still be accomplished by having three controllers from each of the stress

classifications participate in the study. Each block would then consist of three controllers

in the same stress group. The randomized aspect of the block design would be the random

assignment of the three controllers in each block to the three systems.

Finally, note that the ANOVA table shown in Table 13.7 provides an F value to test for

treatment effects but not for blocks. The reason is that the experiment was designed to test

a single factor—work station design. The blocking based on individual stress differences

was conducted to remove such variation from the MSE term. However, the study was not

designed to test specifically for individual differences in stress.

Some analysts compute F � MSB/MSE and use that statistic to test for significance of

the blocks. Then they use the result as a guide to whether the same type of blocking would

be desired in future experiments. However, if individual stress difference is to be a factor in

the study, a different experimental design should be used. A test of significance on blocks

should not be performed as a basis for a conclusion about a second factor.

F �
MSTR

MSE
�

10.5

1.9
� 5.53

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Treatments 21 2 10.5 10.5/1.9 � 5.53 .024

Blocks 30 5 6.0

Error 19 10 1.9 

Total 70 17

TABLE 13.8 ANOVA TABLE FOR THE AIR TRAFFIC CONTROLLER STRESS TEST
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Exercises

Methods

21. Consider the experimental results for the following randomized block design. Make the

calculations necessary to set up the analysis of variance table.testSELF

Treatments

A B C

1 10 9 8
2 12 6 5

Blocks 3 18 15 14
4 20 18 18
5 8 7 8

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F

Treatments 900 
Blocks 400 
Error 
Total 1800

Use α � .05 to test for any significant differences.

22. The following data were obtained for a randomized block design involving five treatments

and three blocks: SST � 430, SSTR � 310, SSBL � 85. Set up the ANOVA table and test

for any significant differences. Use α � .05.

23. An experiment has been conducted for four treatments with eight blocks. Complete the fol-

lowing analysis of variance table.

Use α � .05 to test for any significant differences.

Applications

24. An automobile dealer conducted a test to determine if the time in minutes needed to com-

plete a minor engine tune-up depends on whether a computerized engine analyzer or an

electronic analyzer is used. Because tune-up time varies among compact, intermediate, and

full-sized cars, the three types of cars were used as blocks in the experiment. The data

obtained follow.

NOTES AND COMMENTS

The error degrees of freedom are less for a ran-
domized block design than for a completely ran-
domized design because b � 1 degrees of freedom
are lost for the b blocks. If n is small, the potential

effects due to blocks can be masked because of 
the loss of error degrees of freedom; for large n, the
effects are minimized.
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Use α � .05 to test for any significant differences.

25. Prices for vitamins and other health supplements increased over the past several years, and

the prices charged by different retail outlets often vary a great deal. The following data

show the prices for 13 products at four retail outlets in Rochester, New York (Democrat

and Chronicle, February 13, 2005).

Analyzer

Computerized Electronic

Compact 50 42
Car Intermediate 55 44

Full-sized 63 46

Critical
Student Reading Mathematics Writing

1 526 534 530
2 594 590 586
3 465 464 445
4 561 566 553
5 436 478 430
6 430 458 420

Item CVS Kmart Rite-Aid Wegmans

Caltrate �D (600 mg/60 tablets) 8.49 5.99 7.99 5.99
Centrum (130 tablets) 9.49 9.47 9.89 7.97
Cod liver oil (100 gel tablets) 2.66 2.59 1.99 2.69
Fish oil (1,000 mg/60 tablets) 6.19 4.99 4.99 5.99
Flintstones Children’s (60 tablets) 7.69 5.99 5.99 6.29
Folic acid (400 mcg/250 tablets) 2.19 2.49 3.74 2.69
One-a-Day Maximum (100 tablets) 8.99 7.49 6.99 6.99
One-a-Day Scooby (50 tablets) 7.49 5.99 6.49 5.47
Poly-Vi-Sol (drops, 50 ml) 9.99 8.49 9.99 8.37
Vitamin B-12 (100 mcg/100 tablets) 3.59 1.99 1.99 1.79
Vitamin C (500 mg/100 tablets) 2.99 2.49 1.99 2.39
Vitamin E (200 IU/100 tablets) 4.69 3.49 2.99 3.29
Zinc (50 mg/100 tablets) 2.66 2.59 3.99 2.79

Use α � .05 to test for any significant difference in the mean price for the four retail outlets.

26. The Scholastic Aptitude Test (SAT) contains three parts: critical reading, mathematics, and

writing. Each part is scored on an 800-point scale. Information on test scores for the 2009

version of the SAT is available at the College Board website. A sample of SAT scores for

six students follows.

a. Using a .05 level of significance, do students perform differently on the three portions

of the SAT?

b. Which portion of the test seems to give the students the most trouble? Explain.

27. A study reported in the Journal of the American Medical Association investigated the

cardiac demands of heavy snow shoveling. Ten healthy men underwent exercise testing

with a treadmill and a cycle ergometer modified for arm cranking. The men then cleared

two tracts of heavy, wet snow by using a lightweight plastic snow shovel and an electric

snow thrower. Each subject’s heart rate, blood pressure, oxygen uptake, and perceived

exertion during snow removal were compared with the values obtained during treadmill
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At the .05 level of significance, test for any significant differences.

13.5 Factorial Experiment

The experimental designs we have considered thus far enable us to draw statistical conclusions

about one factor. However, in some experiments we want to draw conclusions about more than

one variable or factor. A factorial experiment is an experimental design that allows simulta-

neous conclusions about two or more factors. The term factorial is used because the experi-

mental conditions include all possible combinations of the factors. For example, for a levels of

factor A and b levels of factor B, the experiment will involve collecting data on ab treatment

combinations. In this section we will show the analysis for a two-factor factorial experiment.

The basic approach can be extended to experiments involving more than two factors.

As an illustration of a two-factor factorial experiment, we will consider a study involving

the Graduate Management Admissions Test (GMAT), a standardized test used by graduate

schools of business to evaluate an applicant’s ability to pursue a graduate program in that field.

Scores on the GMAT range from 200 to 800, with higher scores implying higher aptitude.

In an attempt to improve students’ performance on the GMAT, a major Texas university

is considering offering the following three GMAT preparation programs.

1. A three-hour review session covering the types of questions generally asked on the

GMAT.

2. A one-day program covering relevant exam material, along with the taking and

grading of a sample exam.

3. An intensive 10-week course involving the identification of each student’s weak-

nesses and the setting up of individualized programs for improvement.

Hence, one factor in this study is the GMAT preparation program, which has three treat-

ments: three-hour review, one-day program, and 10-week course. Before selecting the

preparation program to adopt, further study will be conducted to determine how the pro-

posed programs affect GMAT scores.

The GMAT is usually taken by students from three colleges: the College of Business,

the College of Engineering, and the College of Arts and Sciences. Therefore, a second factor

of interest in the experiment is whether a student’s undergraduate college affects the GMAT

score. This second factor, undergraduate college, also has three treatments: business, engi-

neering, and arts and sciences. The factorial design for this experiment with three treatments

corresponding to factor A, the preparation program, and three treatments corresponding to

Subject Treadmill Arm-Crank Ergometer Snow Shovel Snow Thrower

1 177 205 180 98
2 151 177 164 120
3 184 166 167 111
4 161 152 173 122
5 192 142 179 151
6 193 172 205 158
7 164 191 156 117
8 207 170 160 123
9 177 181 175 127

10 174 154 191 109

and arm-crank ergometer testing. Suppose the following table gives the heart rates in

beats per minute for each of the 10 subjects.
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Factor B: College

Business Engineering Arts and Sciences

Factor A: Three-hour review 1 2 3

Preparation One-day program 4 5 6

Program 10-week course 7 8 9

TABLE 13.9 NINE TREATMENT COMBINATIONS FOR THE TWO-FACTOR 

GMAT EXPERIMENT

factor B, the undergraduate college, will have a total of 3 
 3 � 9 treatment combinations.

These treatment combinations or experimental conditions are summarized in Table 13.9.

Assume that a sample of two students will be selected corresponding to each of the nine

treatment combinations shown in Table 13.9: two business students will take the three-hour

review, two will take the one-day program, and two will take the 10-week course. In addi-

tion, two engineering students and two arts and sciences students will take each of the three

preparation programs. In experimental design terminology, the sample size of two for each

treatment combination indicates that we have two replications. Additional replications

and a larger sample size could easily be used, but we elect to minimize the computational

aspects for this illustration.

This experimental design requires that six students who plan to attend graduate school

be randomly selected from each of the three undergraduate colleges. Then two students

from each college should be assigned randomly to each preparation program, resulting in a

total of 18 students being used in the study.

Let us assume that the randomly selected students participated in the preparation pro-

grams and then took the GMAT. The scores obtained are reported in Table 13.10.

The analysis of variance computations with the data in Table 13.10 will provide answers

to the following questions.

• Main effect (factor A): Do the preparation programs differ in terms of effect on

GMAT scores?

• Main effect (factor B): Do the undergraduate colleges differ in terms of effect on

GMAT scores?

• Interaction effect (factors A and B): Do students in some colleges do better on one

type of preparation program whereas others do better on a different type of prepa-

ration program?

The term interaction refers to a new effect that we can now study because we used a

factorial experiment. If the interaction effect has a significant impact on the GMAT scores,

Factor B: College

Business Engineering Arts and Sciences

Three-hour review
500 540 480

Factor A:
580 460 400

Preparation One-day program
460 560 420

Program
540 620 480

10-week course
560 600 480

600 580 410

TABLE 13.10 GMAT SCORES FOR THE TWO-FACTOR EXPERIMENT
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we can conclude that the effect of the type of preparation program depends on the under-

graduate college.

ANOVA Procedure

The ANOVA procedure for the two-factor factorial experiment requires us to partition the

sum of squares total (SST) into four groups: sum of squares for factor A (SSA), sum of

squares for factor B (SSB), sum of squares for interaction (SSAB), and sum of squares due

to error (SSE). The formula for this partitioning follows.

(13.26)

The partitioning of the sum of squares and degrees of freedom is summarized in Table 13.11.

The following notation is used.

Computations and Conclusions

To compute the F statistics needed to test for the significance of factor A, factor B, and inter-

action, we need to compute MSA, MSB, MSAB, and MSE. To calculate these four mean

squares, we must first compute SSA, SSB, SSAB, and SSE; in doing so we will also com-

pute SST. To simplify the presentation, we perform the calculations in five steps. In addi-

tion to a, b, r, and nT as previously defined, the following notation is used.

x̄̄ � overall sample mean of all nT observations

x̄ ij �

 

sample mean for the observations corresponding to the combination

of treatment i (factor A) and treatment j (factor B)

x̄ .j � sample mean for the observations in treatment j (factor B)

x̄
 i. � sample mean for the observations in treatment i (factor A)

xijk �

 

observation corresponding to the kth replicate taken from treatment i

of factor A and treatment j of factor B

a �

b �

r �

nT �

number of levels of factor A

number of levels of factor B

number of replications

total number of observations taken in the experiment; nT � abr

SST � SSA � SSB � SSAB � SSE

Source Sum Degrees Mean
of Variation of Squares of Freedom Square F p-value

Factor A SSA

Factor B SSB

Interaction SSAB

Error SSE

Total SST nT � 1

MSE �
SSE

ab(r � 1)
ab(r � 1)

MSAB

MSE
MSAB �

SSAB

(a � 1)(b � 1)
(a � 1)(b � 1)

MSB

MSE
MSB �

SSB

b � 1
b � 1

MSA

MSE
MSA �

SSA

a � 1
a � 1

TABLE 13.11 ANOVA TABLE FOR THE TWO-FACTOR FACTORIAL EXPERIMENT

WITH r REPLICATIONS
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Step 1. Compute the total sum of squares.

(13.27)

Step 2. Compute the sum of squares for factor A.

(13.28)

Step 3. Compute the sum of squares for factor B.

(13.29)

Step 4. Compute the sum of squares for interaction.

(13.30)

Step 5. Compute the sum of squares due to error.

(13.31)

Table 13.12 reports the data collected in the experiment and the various sums that will

help us with the sum of squares computations. Using equations (13.27) through (13.31), we

calculate the following sums of squares for the GMAT two-factor factorial experiment.

Step 1. SST � (500 � 515)2
� (580 � 515)2

� (540 � 515)2
� . . . �

(410 � 515)2
� 82,450

Step 2. SSA � (3)(2)[(493.33 � 515)2
� (513.33 � 515)2

�

(538.33 � 515)2] � 6100

Step 3. SSB � (3)(2)[(540 � 515)2
� (560 � 515)2

� (445 � 515)2] � 45,300

Step 4. SSAB � 2[(540 � 493.33 � 540 � 515)2
� (500 � 493.33 �

560 � 515)2
� . . . � (445 � 538.33 � 445 � 515)2] � 11,200

Step 5. SSE � 82,450 � 6100 � 45,300 � 11,200 � 19,850

These sums of squares divided by their corresponding degrees of freedom provide the

appropriate mean square values for testing the two main effects (preparation program and

undergraduate college) and the interaction effect.

Because of the computational effort involved in any modest- to large-size factorial ex-

periment, the computer usually plays an important role in performing the analysis of vari-

ance computations shown above and in the calculation of the p-values used to make the

hypothesis testing decisions. Figure 13.6 shows the Minitab output for the analysis of vari-

ance for the GMAT two-factor factorial experiment. Let us use the Minitab output and a level

of significance α � .05 to conduct the hypothesis tests for the two-factor GMAT study. The

p-value used to test for significant differences among the three preparation programs (factor

A) is .299. Because the p-value � .299 is greater than α � .05, there is no significant dif-

ference in the mean GMAT test scores for the three preparation programs. However, for the

undergraduate college effect, the p-value � .005 is less than α � .05; thus, there is a signif-

icant difference in the mean GMAT test scores among the three undergraduate colleges. 
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SSAB � r �
a

i�1

 �
b

j�1

(x̄ ij � x̄i. � x̄.j � x̄̄
 
)2

SSB � ar �
b

j�1

(x̄.j � x̄̄
 
)2

SSA � br �
a

i�1

(x̄i. � x̄̄
 
)2

SST � �
a

i�1

 �
b

j�1

 �
r

k�1

(xijk � x̄̄
 
)2



Factor B: College

Arts Row Factor A
Business Engineering and Sciences Totals Means

Three-hour review 500 540 480

580 460 400

1080 1000 880

2960

Factor A:
Preparation One-day program 460 560 420

Program 540 620 480

1000 1180 900

3080

10-week course 560 600 480

600 580 410

1160 1180 890

3230

Column Totals 3240 3360 2670 9270

Factor B Means x̄̄ �
9270

18
� 515x̄.3 �

2670

6
� 445x̄.2 �

3360

6
� 560x̄.1 �

3240

6
� 540

x̄33 �
890

2
� 445x̄32 �

1180

2
� 590x̄31 �

1160

2
� 580

x̄3. �
3230

6
� 538.33

x̄23 �
900

2
� 450x̄22 �

1180

2
� 590x̄21 �

1000

2
� 500

x̄2. �
3080

6
� 513.33

x̄13 �
880

2
� 440x̄12 �

1000

2
� 500x̄11 �

1080

2
� 540

x̄1. �
2960

6
� 493.33

TABLE 13.12 GMAT SUMMARY DATA FOR THE TWO-FACTOR EXPERIMENT

Treatment combination

totals

Overall total

1
3

.5
Factorial Experim

ent
5
4
1
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Finally, because the p-value of .350 for the interaction effect is greater than α � .05, there

is no significant interaction effect. Therefore, the study provides no reason to believe that the

three preparation programs differ in their ability to prepare students from the different col-

leges for the GMAT.

Undergraduate college was found to be a significant factor. Checking the calculations

in Table 13.12, we see that the sample means are: business students .1 � 540, engineeringx̄

SOURCE        DF        SS        MS         F         P

Factor A       2      6100      3050      1.38     0.299

Factor B       2     45300     22650     10.27     0.005

Interaction    4     11200      2800      1.27     0.350

Error          9     19850      2206

Total         17     82450

FIGURE 13.6 MINITAB OUTPUT FOR THE GMAT TWO-FACTOR DESIGN

Factor B

Level 1 Level 2 Level 3

135 90 75
Level 1

165 66 93
Factor A

125 127 120
Level 2

95 105 136

students .2 � 560, and arts and sciences students .3 � 445. Tests on individual treatment

means can be conducted; yet after reviewing the three sample means, we would anticipate

no difference in preparation for business and engineering graduates. However, the arts and

sciences students appear to be significantly less prepared for the GMAT than students in the

other colleges. Perhaps this observation will lead the university to consider other options

for assisting these students in preparing for the Graduate Management Admission Test.

Exercises

Methods

28. A factorial experiment involving two levels of factor A and three levels of factor B resulted

in the following data.

x̄x̄

Test for any significant main effects and any interaction. Use α � .05.

29. The calculations for a factorial experiment involving four levels of factor A, three levels of

factor B, and three replications resulted in the following data: SST � 280, SSA � 26,

SSB � 23, SSAB � 175. Set up the ANOVA table and test for any significant main effects

and any interaction effect. Use α � .05.

Applications

30. A mail-order catalog firm designed a factorial experiment to test the effect of the size of 

a magazine advertisement and the advertisement design on the number of catalog

requests received (data in thousands). Three advertising designs and two different size 

advertisements were considered. The data obtained follow. Use the ANOVA procedure for 

testSELF
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factorial designs to test for any significant effects due to type of design, size of advertise-

ment, or interaction. Use α � .05.

31. An amusement park studied methods for decreasing the waiting time (minutes) for rides by

loading and unloading riders more efficiently. Two alternative loading/unloading methods

have been proposed. To account for potential differences due to the type of ride and the

possible interaction between the method of loading and unloading and the type of ride, a

factorial experiment was designed. Use the following data to test for any significant effect

due to the loading and unloading method, the type of ride, and interaction. Use α � .05.

Type of Ride

Roller Coaster Screaming Demon Log Flume

Method 1
41 52 50
43 44 46

Method 2
49 50 48
51 46 44

Make/Model Class Type MPG

Honda Civic Small Car Hybrid 37
Honda Civic Small Car Conventional 28
Toyota Prius Small Car Hybrid 44
Toyota Corolla Small Car Conventional 32
Chevrolet Malibu Midsize Car Hybrid 27
Chevrolet Malibu Midsize Car Conventional 23
Nissan Altima Midsize Car Hybrid 32
Nissan Altima Midsize Car Conventional 25
Ford Escape Small SUV Hybrid 27
Ford Escape Small SUV Conventional 21
Saturn Vue Small SUV Hybrid 28
Saturn Vue Small SUV Conventional 22
Lexus RX Midsize SUV Hybrid 23
Lexus RX Midsize SUV Conventional 19
Toyota Highlander Midsize SUV Hybrid 24
Toyota Highlander Midsize SUV Conventional 18

Size of Advertisement

Small Large

A
8 12

12 8

Design B
22 26
14 30

C
10 18
18 14

32. As part of a study designed to compare hybrid and similarly equipped conventional

vehicles, Consumer Reports tested a variety of classes of hybrid and all-gas model cars and

sport utility vehicles (SUVs). The following data show the miles-per-gallon rating

Consumer Reports obtained for two hybrid small cars, two hybrid midsize cars, two hybrid

small SUVs, and two hybrid midsized SUVs; also shown are the miles per gallon obtained

for eight similarly equipped conventional models (Consumer Reports, October 2008).

fileWEB

HybridTest

At the α � .05 level of significance, test for significant effects due to class, type, and

interaction.
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33. A study reported in The Accounting Review examined the separate and joint effects of two

levels of time pressure (low and moderate) and three levels of knowledge (naive, declara-

tive, and procedural) on key word selection behavior in tax research. Subjects were given

a tax case containing a set of facts, a tax issue, and a key word index consisting of 1336 key

words. They were asked to select the key words they believed would refer them to a tax au-

thority relevant to resolving the tax case. Prior to the experiment, a group of tax experts de-

termined that the text contained 19 relevant key words. Subjects in the naive group had little

or no declarative or procedural knowledge, subjects in the declarative group had significant

declarative knowledge but little or no procedural knowledge, and subjects in the procedural

group had significant declarative knowledge and procedural knowledge. Declarative

knowledge consists of knowledge of both the applicable tax rules and the technical terms

used to describe such rules. Procedural knowledge is knowledge of the rules that guide the

tax researcher’s search for relevant key words. Subjects in the low time pressure situation

were told they had 25 minutes to complete the problem, an amount of time which should

be “more than adequate” to complete the case; subjects in the moderate time pressure sit-

uation were told they would have “only” 11 minutes to complete the case. Suppose 25 sub-

jects were selected for each of the six treatment combinations and the sample means for

each treatment combination are as follows (standard deviations are in parentheses).

Knowledge

Naive Declarative Procedural

Low
1.13 1.56 2.00

(1.12) (1.33) (1.54)
Time Pressure

Moderate
0.48 1.68 2.86

(0.80) (1.36) (1.80)

Use the ANOVA procedure to test for any significant differences due to time pressure,

knowledge, and interaction. Use a .05 level of significance. Assume that the total sum of

squares for this experiment is 327.50.

Summary

In this chapter we showed how analysis of variance can be used to test for differences among

means of several populations or treatments. We introduced the completely randomized de-

sign, the randomized block design, and the two-factor factorial experiment. The completely

randomized design and the randomized block design are used to draw conclusions about

differences in the means of a single factor. The primary purpose of blocking in the ran-

domized block design is to remove extraneous sources of variation from the error term. 

Such blocking provides a better estimate of the true error variance and a better test to de-

termine whether the population or treatment means of the factor differ significantly.

We showed that the basis for the statistical tests used in analysis of variance and ex-

perimental design is the development of two independent estimates of the population vari-

ance σ 2. In the single-factor case, one estimator is based on the variation between the

treatments; this estimator provides an unbiased estimate of σ 2 only if the means µ1, µ2, . . . ,

µk are all equal. A second estimator of σ 2 is based on the variation of the observations within

each sample; this estimator will always provide an unbiased estimate of σ 2. By computing

the ratio of these two estimators (the F statistic) we developed a rejection rule for deter-

mining whether to reject the null hypothesis that the population or treatment means are

equal. In all the experimental designs considered, the partitioning of the sum of squares and
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degrees of freedom into their various sources enabled us to compute the appropriate values

for the analysis of variance calculations and tests. We also showed how Fisher’s LSD

procedure and the Bonferroni adjustment can be used to perform pairwise comparisons to

determine which means are different.

Glossary

Factor Another word for the independent variable of interest.

Treatments Different levels of a factor.

Single-factor experiment An experiment involving only one factor with k populations or

treatments.

Response variable Another word for the dependent variable of interest.

Experimental units The objects of interest in the experiment.

ANOVA table A table used to summarize the analysis of variance computations and results.

It contains columns showing the source of variation, the sum of squares, the degrees of free-

dom, the mean square, and the F value(s).

Partitioning The process of allocating the total sum of squares and degrees of freedom to

the various components.

Multiple comparison procedures Statistical procedures that can be used to conduct

statistical comparisons between pairs of population means.

Comparisonwise Type I error rate The probability of a Type I error associated with a

single pairwise comparison.

Experimentwise Type I error rate The probability of making a Type I error on at least one

of several pairwise comparisons.

Completely randomized design An experimental design in which the treatments are

randomly assigned to the experimental units.

Blocking The process of using the same or similar experimental units for all treatments.

The purpose of blocking is to remove a source of variation from the error term and hence

provide a more powerful test for a difference in population or treatment means.

Randomized block design An experimental design employing blocking.

Factorial experiment An experimental design that allows simultaneous conclusions about

two or more factors.

Replications The number of times each experimental condition is repeated in an experiment.

Interaction The effect produced when the levels of one factor interact with the levels of an-

other factor in influencing the response variable.

Key Formulas

Completely Randomized Design

Sample Mean for Treatment j

(13.1)

Sample Variance for Treatment j

(13.2)s2
j �

�
nj

i�1

(xij � x̄
 j)

2

nj � 1

x̄ j �

�
n j

i�1

 xij

nj
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Overall Sample Mean

(13.3)

(13.4)

Mean Square Due to Treatments

(13.7)

Sum of Squares Due to Treatments

(13.8)

Mean Square Due to Error

(13.10)

Sum of Squares Due to Error

(13.11)

Test Statistic for the Equality of k Population Means

(13.12)

Total Sum of Squares

(13.13)

Partitioning of Sum of Squares

(13.14)

Multiple Comparison Procedures

Test Statistic for Fisher’s LSD Procedure

(13.16)

Fisher’s LSD

(13.17)LSD � tα/2�MSE�1
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Randomized Block Design

Total Sum of Squares

(13.22)

Sum of Squares Due to Treatments

(13.23)

Sum of Squares Due to Blocks

(13.24)

Sum of Squares Due to Error

(13.25)

Factorial Experiment

Total Sum of Squares

(13.27)

Sum of Squares for Factor A

(13.28)

Sum of Squares for Factor B

(13.29)

Sum of Squares for Interaction

(13.30)

Sum of Squares for Error
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Supplementary Exercises

34. In a completely randomized experimental design, three brands of paper towels were tested

for their ability to absorb water. Equal-size towels were used, with four sections of towels

tested per brand. The absorbency rating data follow. At a .05 level of significance, does

there appear to be a difference in the ability of the brands to absorb water?
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Lawyer Physical Therapist Cabinetmaker Systems Analyst

44 55 54 44
42 78 65 73
74 80 79 71
42 86 69 60
53 60 79 64
50 59 64 66
45 62 59 41
48 52 78 55
64 55 84 76
38 50 60 62

35. A study reported in the Journal of Small Business Management concluded that self-

employed individuals do not experience higher job satisfaction than individuals who are

not self-employed. In this study, job satisfaction is measured using 18 items, each of which

is rated using a Likert-type scale with 1–5 response options ranging from strong agreement

to strong disagreement. A higher score on this scale indicates a higher degree of job satis-

faction. The sum of the ratings for the 18 items, ranging from 18–90, is used as the mea-

sure of job satisfaction. Suppose that this approach was used to measure the job satisfaction

for lawyers, physical therapists, cabinetmakers, and systems analysts. The results obtained

for a sample of 10 individuals from each profession follow.

Midcap Small-Cap Hybrid Specialty

1.2 2.0 2.0 1.6
1.1 1.2 2.7 2.7
1.0 1.7 1.8 2.6
1.2 1.8 1.5 2.5
1.3 1.5 2.5 1.9
1.8 2.3 1.0 1.5
1.4 1.9 0.9 1.6
1.4 1.3 1.9 2.7
1.0 1.2 1.4 2.2
1.4 1.3 0.3 0.7

At the α � .05 level of significance, test for any difference in the job satisfaction among

the four professions.

36. Money magazine reports percentage returns and expense ratios for stock and bond funds.

The following data are the expense ratios for 10 midcap stock funds, 10 small-cap stock

funds, 10 hybrid stock funds, and 10 specialty stock funds (Money, March 2003).

fileWEB

Funds

fileWEB

SatisJob

Brand

x y z

91 99 83
100 96 88
88 94 89
89 99 76
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Method

A B C

97 93 99
73 100 94
93 93 87

100 55 66
73 77 59
91 91 75

100 85 84
86 73 72
92 90 88
95 83 86

Use α � .05 to test for any significant difference in the mean expense ratio among the four

types of stock funds.

37. The U.S. Census Bureau computes quarterly vacancy and homeownership rates by state and

metropolitan statistical area. Each metropolitan statistical area (MSA) has at least one ur-

banized area of 50,000 or more inhabitants. The following data are the rental vacancy rates

(%) for MSAs in four geographic regions of the United States for the first quarter of 2008

(U.S. Census Bureau website, January 2009).

Use α � .05 to test whether there the mean vacancy rate is the same for each geographic

region.

38. Three different assembly methods have been proposed for a new product. A completely ran-

domized experimental design was chosen to determine which assembly method results in the

greatest number of parts produced per hour, and 30 workers were randomly selected and assigned

to use one of the proposed methods. The number of units produced by each worker follows.

Midwest Northeast South West

16.2 2.7 16.6 7.9
10.1 11.5 8.5 6.6

8.6 6.6 12.1 6.9
12.3 7.9 9.8 5.6
10.0 5.3 9.3 4.3
16.9 10.7 9.1 15.2
16.9 8.6 5.6 5.7

5.4 5.5 9.4 4.0
18.1 12.7 11.6 12.3
11.9 8.3 15.6 3.6
11.0 6.7 18.3 11.0
9.6 14.2 13.4 12.1
7.6 1.7 6.5 8.7

12.9 3.6 11.4 5.0
12.2 11.5 13.1 4.7
13.6 16.3 4.4 3.3

8.2 3.4
24.0 5.5
12.2
22.6
12.0
14.5
12.6
9.5

10.1

fileWEB
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Use these data and test to see whether the mean number of parts produced is the same with

each method. Use α � .05.

39. In a study conducted to investigate browsing activity by shoppers, each shopper was ini-

tially classified as a nonbrowser, light browser, or heavy browser. For each shopper, the

study obtained a measure to determine how comfortable the shopper was in a store. Higher

scores indicated greater comfort. Suppose the following data were collected.

Gasoline Brands

I II III

A 18 21 20
B 24 26 27

Automobiles C 30 29 34
D 22 25 24
E 20 23 24

a. Use α � .05 to test for differences among comfort levels for the three types of browsers.

b. Use Fisher’s LSD procedure to compare the comfort levels of nonbrowsers and light

browsers. Use α � .05. What is your conclusion?

40. A research firm tests the miles-per-gallon characteristics of three brands of gasoline. Be-

cause of different gasoline performance characteristics in different brands of automobiles,

five brands of automobiles are selected and treated as blocks in the experiment; that is, each

brand of automobile is tested with each type of gasoline. The results of the experiment (in

miles per gallon) follow.

a. At α � .05, is there a significant difference in the mean miles-per-gallon characteris-

tics of the three brands of gasoline?

b. Analyze the experimental data using the ANOVA procedure for completely random-

ized designs. Compare your findings with those obtained in part (a). What is the

advantage of attempting to remove the block effect?

41. Wegmans Food Markets and Tops Friendly Markets are the major grocery chains in the

Rochester, New York, area. When Wal-Mart opened a Supercenter in one of the Rochester

suburbs, experts predicted that Wal-Mart would undersell both local stores. The Democrat

and Chronicle obtained the price data in the following table for a 15-item market basket

(Democrat and Chronicle, March 17, 2002).

Light Heavy
Nonbrowser Browser Browser

4 5 5
5 6 7
6 5 5
3 4 7
3 7 4
4 4 6
5 6 5
4 5 7

fileWEB
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Language

Spanish French German

System 1
8 10 12

12 14 16

System 2
6 14 16

10 16 22

At the .05 level of significance, test for any significant difference in the mean price for the

15-item shopping basket for the three stores.

42. The U.S. Department of Housing and Urban Development provides data that show the fair

market monthly rent for metropolitan areas. The following data show the fair market

monthly rent ($) in 2005 for 1-bedroom, 2-bedroom, and 3-bedroom apartments for five

metropolitan areas (The New York Times Almanac, 2006).

At the .05 level of significance, test whether the mean fair market monthly rent is the same

for each metropolitan area.

43. A factorial experiment was designed to test for any significant differences in the time

needed to perform English to foreign language translations with two computerized lan-

guage translators. Because the type of language translated was also considered a signifi-

cant factor, translations were made with both systems for three different languages:

Spanish, French, and German. Use the following data for translation time in hours.

Boston Miami San Diego San Jose Washington

1 Bedroom 1077 775 975 1107 1045
2 Bedrooms 1266 929 1183 1313 1187
3 Bedrooms 1513 1204 1725 1889 1537

Item Tops Wal-Mart Wegmans

Bananas (1 lb.) 0.49 0.48 0.49
Campbell’s soup (10.75 oz.) 0.60 0.54 0.77
Chicken breasts (3 lbs.) 10.47 8.61 8.07
Colgate toothpaste (6.2 oz.) 1.99 2.40 1.97
Large eggs (1 dozen) 1.59 0.88 0.79
Heinz ketchup (36 oz.) 2.59 1.78 2.59
Jell-O (cherry, 3 oz.) 0.67 0.42 0.65
Jif peanut butter (18 oz.) 2.29 1.78 2.09
Milk (fat free, 1/2 gal.) 1.34 1.24 1.34
Oscar Meyer hotdogs (1 lb.) 3.29 1.50 3.39
Ragu pasta sauce (1 lb., 10 oz.) 2.09 1.50 1.25
Ritz crackers (1 lb.) 3.29 2.00 3.39
Tide detergent (liquid, 100 oz.) 6.79 5.24 5.99
Tropicana orange juice (1/2 gal.) 2.50 2.50 2.50
Twizzlers (strawberry, 1 lb.) 1.19 1.27 1.69

Test for any significant differences due to language translator, type of language, and inter-

action. Use α � .05.

44. A manufacturing company designed a factorial experiment to determine whether the num-

ber of defective parts produced by two machines differed and if the number of defective

parts produced also depended on whether the raw material needed by each machine was

fileWEB

MarketBasket
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loaded manually or by an automatic feed system. The following data give the numbers of

defective parts produced. Use α � .05 to test for any significant effect due to machine,

loading system, and interaction.

Data from Medical1 Data from Medical2

North North
Florida New York Carolina Florida New York Carolina

3 8 10 13 14 10

7 11 7 12 9 12

7 9 3 17 15 15

3 7 5 17 12 18

8 8 11 20 16 12

8 7 8 21 24 14

8 8 4 16 18 17

5 4 3 14 14 8

5 13 7 13 15 14

2 10 8 17 17 16

6 6 8 12 20 18

2 8 7 9 11 17

6 12 3 12 23 19

6 8 9 15 19 15

9 6 8 16 17 13

7 8 12 15 14 14

5 5 6 13 9 11

4 7 3 10 14 12

7 7 8 11 13 13

3 8 11 17 11 11

Loading System

Manual Automatic

Machine 1
30 30
34 26

Machine 2
20 24
22 28

Case Problem 1 Wentworth Medical Center

As part of a long-term study of individuals 65 years of age or older, sociologists and physi-

cians at the Wentworth Medical Center in upstate New York investigated the relationship be-

tween geographic location and depression. A sample of 60 individuals, all in reasonably good

health, was selected; 20 individuals were residents of Florida, 20 were residents of New York,

and 20 were residents of North Carolina. Each of the individuals sampled was given a stan-

dardized test to measure depression. The data collected follow; higher test scores indicate

higher levels of depression. These data are contained in the file Medical1.

A second part of the study considered the relationship between geographic location and

depression for individuals 65 years of age or older who had a chronic health condition such

as arthritis, hypertension, and/or heart ailment. A sample of 60 individuals with such condi-

tions was identified. Again, 20 were residents of Florida, 20 were residents of New York, and

20 were residents of North Carolina. The levels of depression recorded for this study follow.

These data are contained in the file named Medical2.

fileWEB
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Managerial Report

1. Use descriptive statistics to summarize the data from the two studies. What are your

preliminary observations about the depression scores?

2. Use analysis of variance on both data sets. State the hypotheses being tested in each

case. What are your conclusions?

3. Use inferences about individual treatment means where appropriate. What are your

conclusions?

Case Problem 2 Compensation for Sales Professionals

Suppose that a local chapter of sales professionals in the greater San Francisco area

conducted a survey of its membership to study the relationship, if any, between the

years of experience and salary for individuals employed in inside and outside sales

positions. On the survey, respondents were asked to specify one of three levels of years

of experience: low (1–10 years), medium (11–20 years), and high (21 or more years). A

portion of the data obtained follow. The complete data set, consisting of 120 observa-

tions, is contained in the file named SalesSalary.

Observation Salary $ Position Experience

1 53938 Inside Medium

2 52694 Inside Medium

3 70515 Outside Low

4 52031 Inside Medium

5 62283 Outside Low

6 57718 Inside Low

7 79081 Outside High

8 48621 Inside Low

9 72835 Outside High

10 54768 Inside Medium

• • • •

• • • •

• • • •

115 58080 Inside High

116 78702 Outside Medium

117 83131 Outside Medium

118 57788 Inside High

119 53070 Inside Medium

120 60259 Outside Low

Managerial Report

1. Use descriptive statistics to summarize the data.

2. Develop a 95% confidence interval estimate of the mean annual salary for all sales-

persons, regardless of years of experience and type of position.

3. Develop a 95% confidence interval estimate of the mean salary for inside salespersons.

4. Develop a 95% confidence interval estimate of the mean salary for outside salesper-

sons.

5. Use analysis of variance to test for any significant differences due to position. Use

a .05 level of significance, and for now, ignore the effect of years of experience.

fileWEB
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6. Use analysis of variance to test for any significant differences due to years of

experience. Use a .05 level of significance, and for now, ignore the effect of position.

7. At the .05 level of significance test for any significant differences due to position,

years of experience, and interaction.

Appendix 13.1 Analysis of Variance with Minitab

Completely Randomized Design

In Section 13.2 we showed how analysis of variance could be used to test for the equality

of k population means using data from a completely randomized design. To illustrate how

Minitab can be used for this type of experimental design, we show how to test whether

the mean number of units produced per week is the same for each assembly method in

the Chemitech experiment introduced in Section 13.1. The sample data are entered

into the first three columns of a Minitab worksheet; column 1 is labeled A, column 2 is

labeled B, and column 3 is labeled C. The following steps produce the Minitab output in

Figure 13.5.

Step 1. Select the Stat menu

Step 2. Choose ANOVA

Step 3. Choose One-way (Unstacked)

Step 4. When the One-way Analysis of Variance dialog box appears:

Enter C1-C3 in the Responses (in separate columns) box

Click OK

Randomized Block Design

In Section 13.4 we showed how analysis of variance could be used to test for the equality

of k population means using the data from a randomized block design. To illustrate how

Minitab can be used for this type of experimental design, we show how to test whether the

mean stress levels for air traffic controllers are the same for three work stations using the

data in Table 13.5. The blocks (controllers), treatments (system), and stress level scores

shown in Table 13.5 are entered into columns C1, C2, and C3 of a Minitab worksheet, re-

spectively. The following steps produce the Minitab output corresponding to the ANOVA

table shown in Table 13.8.

Step 1. Select the Stat menu

Step 2. Choose ANOVA

Step 3. Choose Two-way

Step 4. When the Two-way Analysis of Variance dialog box appears:

Enter C3 in the Response box

Enter C2 in the Row factor box

Enter C1 in the Column factor box

Select Fit Additive Model

Click OK

Factorial Experiment

In Section 13.5 we showed how analysis of variance could be used to test for the equal-

ity of k population means using data from a factorial experiment. To illustrate how

Minitab can be used for this type of experimental design, we show how to analyze the 

data for the two-factor GMAT experiment introduced in that section. The GMAT scores
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shown in Table 13.11 are entered into column 1 of a Minitab worksheet; column 1 is

labeled Score, column 2 is labeled Program, and column 3 is labeled College. The fol-

lowing steps produce the Minitab output corresponding to the ANOVA table shown in

Figure 13.6.

Step 1. Select the Stat menu

Step 2. Choose ANOVA

Step 3. Choose Two-way

Step 4. When the Two-way Analysis of Variance dialog box appears:

Enter C1 in the Response box

Enter C2 in the Row factor box

Enter C3 in the Column factor box

Click OK

Appendix 13.2 Analysis of Variance with Excel

Completely Randomized Design

In Section 13.2 we showed how analysis of variance could be used to test for the equal-

ity of k population means using data from a completely randomized design. To illustrate

how Excel can be used to test for the equality of k population means for this type of

experimental design, we show how to test whether the mean number of units produced per

week is the same for each assembly method in the Chemitech experiment introduced in

Section 13.1. The sample data are entered into worksheet rows 2 to 6 of columns A, B, and

C as shown in Figure 13.7. The following steps are used to obtain the output shown in

cells A8:G22; the ANOVA portion of this output corresponds to the ANOVA table shown

in Table 13.3.

Step 1. Click the Data tab on the Ribbon

Step 2. In the Analysis group, click Data Analysis

Step 3. Choose Anova: Single Factor from the list of Analysis Tools

Click OK

Step 4. When the Anova: Single Factor dialog box appears:

Enter A1:C6 in Input Range box

Select Columns

Select Labels in First Row

Select Output Range and enter A8 in the box

Click OK

Randomized Block Design

In Section 13.4 we showed how analysis of variance could be used to test for the equality of

k population means using data from a randomized block design. To illustrate how Excel can

be used for this type of experimental design, we show how to test whether the mean stress

levels for air traffic controllers are the same for three work stations. The stress level scores

shown in Table 13.5 are entered into worksheet rows 2 to 7 of columns B, C, and D as shown

in Figure 13.8. The cells in rows 2 to 7 of column A contain the number of each controller

(1, 2, 3, 4, 5, 6). The following steps produce the Excel output shown in cells A9:G30. The

ANOVA portion of this output corresponds to the Minitab output shown in Table 13.8.

Step 1. Click the Data tab on the Ribbon

Step 2. In the Analysis group, click Data Analysis
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Step 3. Choose Anova: Two-FactorWithout Replication from the list of Analysis Tools

Click OK

Step 4. When the Anova: Two-Factor Without Replication dialog box appears:

Enter A1:D7 in Input Range box

Select Labels

Select Output Range and enter A9 in the box

Click OK

Factorial Experiment

In Section 13.5 we showed how analysis of variance could be used to test for the equality 

of k population means using data from a factorial experiment. To illustrate how Excel 

can be used for this type of experimental design, we show how to analyze the data for 

the two-factor GMAT experiment introduced in that section. The GMAT scores shown 

in Table 13.10 are entered into worksheet rows 2 to 7 of columns B, C, and D as shown in

Figure 13.9. The following steps are used to obtain the output shown in cells A9:G44; the

ANOVA portion of this output corresponds to the Minitab output in Figure 13.6.

Step 1. Click the Data tab on the Ribbon

Step 2. In the Analysis group, click Data Analysis

Step 3. Choose Anova: Two-Factor With Replication from the list of Analysis Tools

Click OK

Step 4. When the Anova: Two-Factor With Replication dialog box appears:

Enter A1:D7 in Input Range box

Enter 2 in Rows per sample box

FIGURE 13.7 EXCEL SOLUTION FOR THE CHEMITECH EXPERIMENT

A B C D E F G H

1 Method A Method B Method C

2 58 58 48

3 64 69 57

4 55 71 59

5 66 64 47

6 67 68 49

7

8 Anova: Single Factor

9

10 SUMMARY

11 Groups Count Sum Average Variance

12 Method A 5 310 62 27.5

13 Method B 5 330 66 26.5

14 Method C 5 260 52 31

15

16

17 ANOVA

18 Source of Variation SS df MS F P-value F crit

19 Between Groups 520 2 260 9.1765 0.0038 3.8853

20 Within Groups 340 12 28.3333

21

22 Total 860 14

23
24
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Select Output Range and enter A9 in the box

Click OK

Appendix 13.3 Analysis of a Completely Randomized Design
Using StatTools

In this appendix we show how StatTools can be used to test for the equality of k population

means for a completely randomized design. We use the Chemitech data in Table 13.1 to il-

lustrate. Begin by using the Data Set Manager to create a StatTools data set for these data

using the procedure described in the appendix in Chapter 1. The following steps can be used

to test for the equality of the three population means.

Step 1. Click the StatTools tab on the Ribbon

Step 2. In the Analyses group, click Statistical Inference

Step 3. Choose the One-Way ANOVA option

FIGURE 13.8 EXCEL SOLUTION FOR THE AIR TRAFFIC CONTROLLER STRESS TEST

A B C D E F G H

1 Controller System A System B System C

2 1 15 15 18

3 2 14 14 14

4 3 10 11 15

5 4 13 12 17

6 5 16 13 16

7 6 13 13 13

8

9 Anova: Two-Factor Without Replication

10

11 SUMMARY Count Sum Average Variance

12 1 3 48 16 3

13 2 3 42 14 0

14 3 3 36 12 7

15 4 3 42 14 7

16 5 3 45 15 3

17 6 3 39 13 0

18

19 System A 6 81 13.5 4.3

20 System B 6 78 13 2

21 System C 6 93 15.5 3.5

22

23

24 ANOVA

25 Source of Variation SS df MS F P-value F crit

26 Rows 30 5 6 3.16 0.0574 3.33

27 Columns 21 2 10.5 5.53 0.0242 4.10

28 Error 19 10 1.9

29

30 Total 70 17

31

fileWEB

Chemitech



Step 4. When the StatTools-One-Way ANOVA dialog box appears:

In the Variables section:

Click the Format button and select Unstacked

Select Method A

Select Method B

Select Method C

Select 95% in the Confidence Level box

Click OK
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FIGURE 13.9 EXCEL SOLUTION FOR THE TWO-FACTOR GMAT EXPERIMENT

A B C D E F G H

1 Business Engineering Arts and Sciences

2 3-hour review 500 540 480

3 580 460 400

4 1-day program 460 560 420

5 540 620 480

6 10-week course 560 600 480

7 600 580 410

8

9 Anova: Two-Factor With Replication

10

11 SUMMARY Business Engineering Arts and Sciences Total

12 3-hour review

13 Count 2 2 2 6

14 Sum 1080 1000 880 2960

15 Average 540 500 440 493.33333

16 Variance 3200 3200 3200 3946.6667

17

18 1-day program

19 Count 2 2 2 6

20 Sum 1000 1180 900 3080

21 Average 500 590 450 513.33333

22 Variance 3200 1800 1800 5386.6667

23

24 10-week course

25 Count 2 2 2 6

26 Sum 1160 1180 890 3230

27 Average 580 590 445 538.33333

28 Variance 800 200 2450 5936.6667

29

30 Total

31 Count 6 6 6

32 Sum 3240 3360 2670

33 Average 540 560 445

34 Variance 2720 3200 1510

35

36

37 ANOVA

38 Source of Variation SS df MS F P-value F crit

39 Sample 6100 2 3050 1.38 0.2994 4.26

40 Columns 45300 2 22650 10.27 0.0048 4.26

41 Interaction 11200 4 2800 1.27 0.3503 3.63

42 Within 19850 9 2205.5556

43

44 Total 82450 17

45



Note that in step 4 we selected the Unstacked option after clicking the Format button. The

Unstacked option means that the data for the three treatments appear in separate columns

of the worksheet. In a stacked format, only two columns would be used. For example, the

data could have been organized as follows:
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A B C

1 Method Units Produced

2 Method A 58

3 Method A 64

4 Method A 55

5 Method A 66

6 Method A 67

7 Method B 58

8 Method B 69

9 Method B 71

10 Method B 64

11 Method B 68

12 Method C 48

13 Method C 57

14 Method C 59

15 Method C 47

16 Method C 49

17

Data are frequently recorded in a stacked format. For stacked data, simply select the Stacked

option after clicking the Format button.


